Auflistung nach Autor:in "Arneth, Almut"
Gerade angezeigt 1 - 2 von 2
- Treffer pro Seite
- Sortieroptionen
Publikation EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events(Copernicus, 25.08.2010) Manninen, Hanna E.; Nieminen, Tuomo; Asmi, Eija; Gagné, Stéphanie; Häkkinen, Silja; Lehtipalo, Katrianne; Aalto, Pasi Pekka; Vana, Marko; Mirme, Aadu; Mirme, Sander; Hõrrak, Urmas; Plass-Dülmer, Christian; Stange, Gert; Kiss, Gyula; Hoffer, András; Törő, N.; Moerman, Marcel; Henzing, Bas; de Leeuw, Gerrit; Brinkenberg, Marcel; Kouvarakis, Giorgos N.; Bougiatioti, Aikaterini; Mihalopoulos, Nikolaos; O'Dowd, Colin D.; Ceburnis, Darius; Arneth, Almut; Svenningsson, Brigitta; Swietlicki, Erik; Tarozzi, Leone; Decesari, Stefano; Facchini, Maria Cristina; Birmili, Wolfram; Sonntag, André; Wiedensohler, Alfred; Boulon, Julien; Sellegri, Karine; Laj, Paolo; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Wehrle, Günther; Laaksonen, Ari; Hamed, Amar; Joutsensaari, Jorma; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, MarkkuWe present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Subarctic atmospheric aerosol composition. 3. Measured and modeled properties of cloud condensation nuclei(Wiley, 19.02.2010) Kammermann, Lukas; Gysel, Martin; Weingartner, Ernest; Herich, Hanna; Cziczo, Daniel J.; Holst, Thomas; Svenningsson, Birgitta; Arneth, Almut; Baltensperger, UrsAerosol particles can modify cloud properties by acting as cloud condensation nuclei (CCN). Predicting CCN properties is still a challenge and not properly incorporated in current climate models. Atmospheric particle number size distributions, hygroscopic growth factors, and polydisperse CCN number concentrations were measured at the remote subarctic Stordalen mire, 200 km north of the Arctic Circle in northern Sweden. The CCN number concentration was highly variable, largely driven by variations in the total number of sufficiently large particles, though the variability of chemical composition was increasingly important for decreasing supersaturation. The hygroscopicity of particles measured by a hygroscopicity tandem differential mobility analyzer (HTDMA) was in agreement with large critical diameters observed for CCN activation (κ ≈ 0.07–0.21 for D = 50–200 nm). Size distribution and time‐ and size‐resolved HTDMA data were used to predict CCN number concentrations. Agreement of predictions with measured CCN within ±11% was achieved using parameterized Köhler theory and assuming a surface tension of pure water. The sensitivity of CCN predictions to various simplifying assumptions was further explored: We found that (1) ignoring particle mixing state did not affect CCN predictions, (2) averaging the HTDMA data in time with retaining the size dependence did not introduce a substantial bias, while individual predictions became more uncertain, and (3) predictions involving the hygroscopicity parameter recommended in literature for continental sites (κ ≈ 0.3 ± 0.1) resulted in a significant prediction bias. Future modeling studies should therefore at least aim at using averaged, size‐resolved, site‐specific hygroscopicity or chemical composition data for predictions of CCN number concentrations.01A - Beitrag in wissenschaftlicher Zeitschrift