Auflistung nach Autor:in "DeCarlo, Peter F."
Gerade angezeigt 1 - 10 von 10
Treffer pro Seite
Sortieroptionen
- PublikationA new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra(Copernicus, 2012) Heringa, Maarten F.; DeCarlo, Peter F.; Chirico, Roberto; Tritscher, Torsten; Clairotte, Michael; Mohr, Christine; Crippa, Monica; Slowik, Jay Gates; Pfaffenberger, Lisa; Dommen, Josef; Weingartner, Ernest; Prévôt, André S.H.; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]Abstract. Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25–0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationAerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation(Elsevier, 04/2011) Chirico, Roberto; Prevot, Andre S.H.; DeCarlo, Peter F.; Heringa, Maarten F.; Richter, Rene; Weingartner, Ernest; Baltensperger, Urs [in: Atmospheric Environment]In this study we present measurements of gas and aerosol phase composition for a mixed vehicle fleet in the Gubrist tunnel (Switzerland) in June 2008. PM1 composition measurements were made with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) and a Multi Angle Absorption Photometer (MAAP). Gas-phase measurements of CO, CO2, NOx and total hydrocarbons (THC) were performed with standard instrumentation. Weekdays had a characteristic diurnal pattern with 2 peaks in concentrations for all traffic related species corresponding to high vehicle density (∼300 ± 30 vehicles per 5 min) in the morning rush hour between 06:00 and 09:00 and in the afternoon rush hours from approximately 15:30 to 18:30. The emission factors (EF) of OA were heavily influenced by the OA mass loading. To exclude this partitioning effect, only organic aerosol mass concentrations from 60 μg m−3 to 90 μg m−3 were considered and for these conditions the EF(OA) value for HDV was 33.7 ± 2.3 mg km−1 for a temperature inside the tunnel of 20–25 °C. This value is not directly applicable to ambient conditions because it is derived from OA mass concentrations that are roughly a factor of 10 higher than typical ambient concentrations. An even higher EF(OA)HDV value of 47.4 ± 1.6 mg km−1 was obtained when the linear fit was applied to all data points including OA concentrations up to 120 μg m−3. Similar to the increasing EF, the OA/BC ratio in the tunnel was also affected by the organic loading and it increased by a factor of ∼3 over the OA range 10–120 μg m−3. This means that also the OA emission factors at ambient concentrations of around 5–10 μg m−3 would be 2–3 times lower than the emission factor given above. For OA concentrations lower than 40 μg m−3 the OA/BC mass ratio was below 1, while at an OA concentration of 100–120 μg m−3 the OA/BC ratio was ∼1.5. The AMS mass spectra (MS) acquired in the tunnel were highly correlated with the primary organic aerosol (POA) MS from a EURO 3 diesel vehicle with a speed similar to the average tunnel speed.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationChanges of hygroscopicity and morphology during ageing of diesel soot(Institute of Physics Publishing, 2011) Tritscher, Torsten; Jurányi, Zsófia; Martin, Maria; Chirico, Roberto; Gysel, Martin; Heringa, Maarten F.; DeCarlo, Peter F.; Sierau, Berko; Prévôt, André S.H.; Weingartner, Ernest; Baltensperger, Urs [in: Environmental Research Letters]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationImpact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments(Copernicus, 06.12.2010) Chirico, Roberto; DeCarlo, Peter F.; Heringa, Maarten F.; Tritscher, Torsten; Richter, René; Prévôt, André S. H.; Dommen, Josef; Weingartner, Ernest; Wehrle, Günther; Gysel, Martin; Laborde, Marie; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23–0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.21 to 0.37.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationInvestigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer(Copernicus, 23.06.2011) Heringa, Maarten F.; DeCarlo, Peter F.; Chirico, Roberto; Tritscher, Torsten; Dommen, Josef; Weingartner, Ernest; Richter, René; Wehrle, Günther; Prévôt, André S.H.; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19−0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at m/z 43 (f 43) to the total organic mass spectrum. The non-oxidized fragment C3H7+ has a considerable contribution at m/z 43 for the fresh OA with an increasing contribution of the oxygenated ion C2H3O+ during aging. After five hours of aging, the OA has a rather low C2H3O+ signal for a given CO2+ fraction, possibly indicating a higher ratio of acid to non-acid oxygenated compounds in wood burning OA compared to other oxygenated organic aerosol (OOA).01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMeasured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch(Copernicus, 25.08.2010) Jurányi, Zsófia; Gysel, Martin; Weingartner, Ernest; DeCarlo, Peter F.; Kammermann, Lukas; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN) and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS=0.12–1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m a.s.l.). In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using dry number size distribution (scanning particle mobility sizer, SMPS) and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP) in a simplified Köhler theory. The predicted and the measured CCN number concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation. Despite the high average organic mass fraction (~45%) in the fine mode, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA), AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used to determine particle hygroscopicity required for CCN predictions if no suitable chemical composition data are available.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMeasured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch(Copernicus, 05.03.2010) Fierz-Schmidhauser, Rahel; Zieger, Paul; Gysel, Martin; Kammermann, Lukas; DeCarlo, Peter F.; Baltensperger, Urs; Weingartner, Ernest [in: Atmospheric Chemistry and Physics]Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH)=σsp(RH)/σsp(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH) is available so far. At this site, f(RH=85%) varied between 1.2 and 3.3. Measured f(RH) agreed well with f(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH) predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationRelating cloud condensation nuclei activity and oxidation level of α-pinene secondary organic aerosols(Wiley, 30.11.2011) Frosch, Mia; Bilde, Merete; DeCarlo, Peter F.; Jurányi, Zsófia; Tritscher, Torsten; Dommen, Josef; Donahue, Neil M.; Gysel, Martin; Weingartner, Ernest; Baltensperger, Urs [in: Journal of Geophysical Research: Atmospheres]During a series of smog chamber experiments, the effects of chemical and photochemical aging on the ability of organic aerosols generated from ozonolysis of α-pinene to act as cloud condensation nuclei (CCN) were investigated. In particular, the study focused on the relation between oxygenation and the CCN-derived single hygroscopicity parameter κ for different experimental conditions: varying precursor concentrations (10–40 ppb), different OH sources (photolysis of HONO either with or without the addition of NO or ozonolysis of tetramethylethylene), and exposure to light. Oxygenation was described by the contribution of the aerosol mass spectrometer (AMS) mass fragment m/z 44 to the total organic signal (f44) and the oxygen to carbon molar ratio (O/C), likewise determined with AMS. CCN activity, described by the hygroscopicity parameter κ, was determined with a CCN counter. It was found that f44 increases with decreasing precursor concentration and with chemical aging, whereas neither of these affects CCN activity. Overall, κ is largely independent of O/C in the range 0.3 < O/C < 0.6 (0.07 < f44 < 0.12), although an empirical unweighted least squares fit was determined: κ = (0.071 ± 0.02) · (O/C) + (0.0785 ± 0.009) for particles with diameter in the range 59–200 nm. Growth kinetics of activating secondary organic aerosols were found to be comparable to those of ammonium sulfate and were not influenced by chemical aging.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationRelating hygroscopicity and composition of organic aerosol particulate matter(Copernicus, 10.02.2011) Duplissy, Jonathan; DeCarlo, Peter F.; Dommen, Josef; Alfarra, M. Rami; Metzger, Axel; Barmpadimos, Iakovos; Prevot, Andre S.H.; Weingartner, Ernest; Tritscher, Torsten; Gysel, Martin; Aiken, Allison C.; Jimenez, Jose L; Canagaratna, Manjula R.; Worsnop, Douglas R.; Collins, Don R.; Tomlinson, Jason; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "ϰorg" parameter, and f44 was determined and is given by ϰorg = 2.2 × f44 − 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationVolatility and hygroscopicity of aging secondary organic aerosol in a smog chamber(Copernicus, 18.11.2011) Tritscher, Torsten; Dommen, Josef; DeCarlo, Peter F.; Gysel, Martin; Barmet, Peter B.; Praplan, Arnaud P.; Weingartner, Ernest; Prévôt, Andre S.H.; Riipinen, Ilona; Donahue, Neil M.; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]The evolution of secondary organic aerosols (SOA) during (photo-)chemical aging processes was investigated in a smog chamber. Fresh SOA from ozonolysis of 10 to 40 ppb α-pinene was formed followed by aging with OH radicals. The particles' volatility and hygroscopicity (expressed as volume fraction remaining (VFR) and hygroscopicity parameter κ) were measured in parallel with a volatility and hygroscopicity tandem differential mobility analyzer (V/H-TDMA). An aerosol mass spectrometer (AMS) was used for the chemical characterization of the aerosol. These measurements were used as sensitive parameters to reveal the mechanisms possibly responsible for the changes in the SOA composition during aging. A change of VFR and/or κ during processing of atmospheric aerosols may occur either by addition of SOA mass (by condensation) or by a change of SOA composition leading to different aerosol properties. The latter may occur either by heterogeneous reactions on the surface of the SOA particles, by condensed phase reactions like oligomerization or by an evaporation – gas-phase oxidation – recondensation cycle. The condensation mechanism showed to be dominant when there is a substantial change in the aerosol mass by addition of new molecules to the aerosol phase with time. Experiments could be divided into four periods based on the temporal evolution (qualitative changes) of VFR, κ and organic mass: O3 induced condensation, ripening, and OH induced chemical aging first with substantial mass gain and then without significant mass gain. During the O3 induced condensation the particles' volatility decreased (increasing VFR) while the hygroscopicity increased. Thereafter, in the course of ripening volatility continued to decrease, but hygroscopicity stayed roughly constant. After exposing the SOA to OH radicals an OH induced chemical aging with substantial mass gain started resulting in the production of at least 50 % more SOA mass. This new SOA mass was highly volatile and oxidized. This period was then followed by further OH induced chemical aging without significant mass gain leading to a decrease of volatility while hygroscopicity and SOA mass stayed roughly constant.01A - Beitrag in wissenschaftlicher Zeitschrift