Auflistung nach Autor:in "Gujer, Willi"
Gerade angezeigt 1 - 3 von 3
- Treffer pro Seite
- Sortieroptionen
Publikation An efficient monitoring concept with control charts for on-line sensors(IWA Publishing, 2002) Thomann, Michael; Rieger, Leiv; Frommhold, Sabine; Siegrist, Hansruedi; Gujer, WilliA monitoring concept for on-line sensors will be discussed which helps the WWTP staff to detect drift-, shift- and outlier effects as well as unsatisfactory calibration curves. The approach is based on the analysis of comparative measurements between the sensor and a reference method. It combines statistical analysis such as control charts and regression analysis with decision support rules. The combination of two different detection levels in the selected Shewhart control charts with additional criteria allows one to detect ‘out-of-control’ situations early with an optimized measurement effort. Beside the statistical analysis the concept supports the operator with a graphical analysis to monitor the accuracy of on-line measurements efficiently. The widely applicable monitoring concept will be illustrated with examples for an ion-sensitive NH4+- and a MLSS-sensor.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Computer-aided monitoring and operation of continuous measuring devices(IWA Publishing, 2004) Rieger, Leiv; Thomann, Michael; Joss, Adriano; Gujer, Willi; Siegrist, HansruediExtended studies of measuring and control systems in activated sludge plants at EAWAG revealed that the measuring devices remain the weakest point in control applications. To overcome this problem, a software package was developed which analyses and evaluates the residuals between a reference measurement and the sensor and collects the information in a database. The underlying monitoring concept is based on a two-step evaluation of the residuals by means of statistical evaluations using control charts with two different sets of criteria. The first step is a warning phase in which hints on probable errors trigger an increase in the monitoring frequency. In the second step, the alarm phase, the error hypothesis has to be validated and should allow immediate and targeted reactions from the operator. This procedure enables an optimized and flexible monitoring effort combined with an increased probability of early detection of systematic measuring errors. Beside the monitoring concept, information about the measuring device, the performed servicing actions and the responsibilities is stored. Statistical values for the quantitative characterization of the measuring system during operation will be given. They are needed to parameterise controllers or to guarantee the accuracy of the instrument in order to allow reliable calculations of effluent tax. In contrast to other concepts, not only is the measuring device examined under standard conditions, but so is the entire measuring chain from the liquid to be analysed to the value stored in the database of the supervisory system. The knowledge of the response time of the measuring system is then required in order to allow a comparison of the corresponding values.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Quantifying the uncertainty of on-line sensors at WWTPs during field operation(Elsevier, 12/2005) Rieger, Leiv; Thomann, Michael; Gujer, Willi; Siegrist, HansruediIt remains an ongoing task to quantify the uncertainty of continuous measuring systems at WWTPs during field operation. The commonly used methods are based on lab experiments under standardized conditions and are only suitable for characterizing the measuring device itself. For measuring devices under field conditions, a knowledge of the response time, trueness and precision is equally important. A method is proposed which can be used to characterize newly installed on-line sensors or to evaluate monitoring data which may contain systematic errors. The concept is based on comparative measurements between the sensor and a reference. A linear regression is used to differentiate between trueness and precision. Various statistical tests are conducted to validate the preconditions of linear regression. The information about the trueness and precision of the measuring system under field conditions helps to adapt control strategies more effectively to the relevant processes and permits sophisticated control concepts. Moreover, the concept can help to define guidelines for evaluating the uncertainties of effluent quality monitoring to overcome the concerns about on-line sensors, improve the trust in these systems and to allow the use of continuously measuring systems for legislative purposes. The approach is discussed in detail in this paper and all statistical tests and formulas are listed in the Appendix.01A - Beitrag in wissenschaftlicher Zeitschrift