Auflistung nach Autor:in "Hébrard, Luc"
Gerade angezeigt 1 - 3 von 3
- Treffer pro Seite
- Sortieroptionen
Publikation A magnetic camera to assess the risk of magnetic interaction between portable electronics and cardiac implantable electronic devices(IEEE, 06/2022) Quirin, Thomas; Vergne, Céline; Féry, Corentin; Badertscher, Patrick; Nicolas, Hugo; Mannhart, Diego; Osswald, Stefan; Kuhne, Michael; Sticherling, Christian; Madec, Morgan; Hébrard, Luc; Knecht, Sven; Pascal, Joris04B - Beitrag KonferenzschriftPublikation Three-dimensional magnetic camera for the characterization of magnetic manipulation instrumentation systems for electrophysiology procedures(Springer, 2017) Pascal, Joris; Vogel, Dorian; Knecht, Sven; Vescovo, Marco; Hébrard, Luc; Eskola, Hannu; Väisänen, Outi; Viik, Jari; Hyttinen, Jari06 - PräsentationPublikation Towards tracking of deep brain stimulation electrodes using an integrated magnetometer(MDPI, 04/2021) Quirin, Thomas; Féry, Corentin; Vogel, Dorian; Vergne, Céline; Sarracanie, Mathieu; Salameh, Najat; Madec, Morgan; Hemm-Ode, Simone; Hébrard, Luc; Pascal, JorisThis paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.01A - Beitrag in wissenschaftlicher Zeitschrift