Auflistung nach Autor:in "Jung, Thomas A."
Gerade angezeigt 1 - 7 von 7
- Treffer pro Seite
- Sortieroptionen
Publikation A novel route to molecular self-assembly. Self-intermixed monolayer phases(Wiley, 18.10.2002) de Wild, Michael; Berner, Simon; Suzuki, Hitoshi; Yanagi, Hisao; Schlettwein, Derck; Ivan, Stanislav; Baratoff, Alexis; Guentherodt, Hans-Joachim; Jung, Thomas A.The stars and stripes: A novel route to highly perfect molecular self-assembly is presented. Depending on the relative surface (Ag(111)) coverage of the two species, subphthalocyanine and C60 (green and yellow in the colored STM image) on an surface, well-ordered intermixed monolayers consisting of 1D chains with 1 nm width or 2D hexagonal patterns are formed. The structural parameters and schematic binary "phase diagram" of this system are deduced from detailed room-temperature STM studies. The most important underlying interactions and the relevant properties of the molecules are discussed qualitatively.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A Two‐Dimensional Polymer Synthesized at the Air/Water Interface(Wiley, 06/2018) Müller, Vivian; Hinaut, Antoine; Moradi, Mina; Jung, Thomas A.; Shahgaldian, Patrick; Möhwald, Helmuth; Hofer, Greogor; Kröger, Martin; King, Benjamin T.; Meyer, Ernst; Glatzel, Thilo; Schlüter, Dieter A.; Baljozovic, MilosA trifunctional, partially fluorinated anthracene‐substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long‐range‐ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non‐contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X‐ray diffractometry of a closely related 2D polymer. The nc‐AFM images highlight the long‐range order over areas of at least 300×300 nm2. As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross‐links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Energy Level Alignment at Metal-Octaethylporphyrin Interfaces(American Chemical Society, 2005) von Arx, Matthias; Baratoff, Alexis; Güntherodt, Hans-Joachim; Schintke, Silvia; Alkauskas, Audrius; Jung, Thomas A.; Ramoino, Luca01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Layer-Selective Epitaxial Self-Assembly of Porphyrins on Ultrathin Insulators(Elsevier, 09.01.2006) von Arx, Matthias; Baratoff, Alexis; Güntherodt, Hans-Joachim; Ramoino, Luca; Schintke, Silvia; Jung, Thomas A.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Molecular assembly and self-assembly. Molecular nanoscience for future technologies(Schweizerische Chemische Gesellschaft, 2002) de Wild, Michael; Berner, Simon; Suzuki, Hitoshi; Ramoino, Luca; Baratoff, Alexis; Jung, Thomas A.In this review the emerging science of single molecules is discussed from the perspective of nanoscale molecular functions and devices. New methods for the controlled assembly of well-defined mo lecular nanostructures are presented: self assembly and single molecular positioning. The observation and selective modification of conformation, electronics, and molecular mechanics of individual molecules and molecular assemblies by scanning probes are demonstrated. To complement this scientific review, some of the possible consequences and visions for future developments are discussed, as far as they derive from the presented systems. Here, the prospects of nanoscale science to stimulate technological evolution are ex emplified.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Molecular assembly and self‐assembly: molecular nanoscience for future technologies(2003) de Wild, Michael; Berner, Simon; Suzuki, Hitoshi; Ramoino, Luca; Baratoff, Alexis; Jung, Thomas A.In this review the emerging science of single molecules is discussed in the perspective of nanoscale molecular functions and devices. New methods for the controlled assembly of well-defined molecular nanostructures are pre- sented: self assembly and single molecular positioning. The observation and selective modification of conformation, electronics, and molecular mechanics of individual molecules and molecular assemblies by scanning probes is dem- onstrated. To complement this scientific review, some of the possible conse- quences and visions for future developments are discussed, as far as they derive from the presented systems. The prospects of nanoscale science to stim- ulate technological evolution are exemplified.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Nanobiocatalysts with inbuilt cofactor recycling for oxidoreductase catalysis in organic solvents(Royal Society of Chemistry, 2023) Sahlin, Jenny; Wu, Congyu; Buscemi, Andrea; Schärer, Claude; Nazemi, Seyed Amirabbas; S. K., Rejaul; Herrera-Reinoza, Nataly; Jung, Thomas A.; Shahgaldian, PatrickThe major stumbling block in the implementation of oxidoreductase enzymes in continuous processes is their stark dependence on costly cofactors that are insoluble in organic solvents. We describe a chemical strategy that allows producing nanobiocatalysts, based on an oxidoreductase enzyme, that performs biocatalytic reactions in hydrophobic organic solvents without external cofactors. The chemical design relies on the use of a silica-based carrier nanoparticle, of which the porosity can be exploited to create an aqueous reservoir containing the cofactor. The nanoparticle core, possessing radial-centred pore channels, serves as a cofactor reservoir. It is further covered with a layer of reduced porosity. This layer serves as a support for the immobilisation of the selected enzyme yet allowing the diffusion of the cofactor from the nanoparticle core. The immobilised enzyme is, in turn, shielded by an organosilica layer of controlled thickness fully covering the enzyme. Such produced nanobiocatalysts are shown to catalyse the reduction of a series of relevant ketones into the corresponding secondary alcohols, also in a continuous flow fashion. © 2023 RSC.01A - Beitrag in wissenschaftlicher Zeitschrift