Auflistung nach Autor:in "Kupiszewski, Piotr"
Gerade angezeigt 1 - 3 von 3
- Treffer pro Seite
- Sortieroptionen
Publikation Ice residual properties in mixed‐phase clouds at the high‐alpine Jungfraujoch site(Wiley, 2016) Kupiszewski, Piotr; Zanatta, Marco; Mertes, Stephan; Vochezer, Paul; Lloyd, Gary; Schneider, Johannes; Schenk, Ludwig; Schnaiter, Martin; Baltensperger, Urs; Weingartner, Ernest; Gysel, MartinIce residual (IR) and total aerosol properties were measured in mixed‐phase clouds (MPCs) at the high‐alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC‐containing particles were determined using single‐particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10−4to 10 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC‐free and BC‐containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC‐containing particles also increased with total particle size, in a similar manner as for the BC‐free particles, but on a level 1 order of magnitude lower. Furthermore, BC‐containing IR were found to have a thicker coating than the BC‐containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques(Copernicus, 2015) Worringen, Annette; Kandler, Konrad; Benker, Nathlie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, D.; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, S.; Weinbruch, Stephan; Ebert, MartinIn the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20–70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200–400 nm in geometric diameter. In a few cases, a second supermicron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the sub-micrometer range. Silicates and Ca-rich particles were mainly found with diameters above 1 μm (using ISI and FINCH), in contrast to the Ice-CVI which also sampled many submicron particles of both groups. Due to changing meteorological conditions, the INP/IPR composition was highly variable if different samples were compared. Thus, the observed discrepancies between the different separation techniques may partly result from the non-parallel sampling. The differences of the particle group relative number abundance as well as the mixing state of INP/IPR clearly demonstrate the need of further studies to better understand the influence of the separation techniques on the INP/IPR chemical composition. Also, it must be concluded that the abundance of contamination artifacts in the separated INP and IPR is generally large and should be corrected for, emphasizing the need for the accompanying chemical measurements. Thus, further work is needed to allow for routine operation of the three separation techniques investigated.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation The ice selective inlet. a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds(Copernicus, 2015) Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schnaiter, Martin; Bigi, Alessandro; Gysel, Martin; Rosati, Bernadette; Toprak, Emre; Mertes, Stephan; Baltensperger, UrsClimate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol–cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE) 2013 and 2014 – two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important opportunity for a proof of concept of the inlet design. In this work we present the setup of the ISI, including the modelling and laboratory characterization of its components, as well as field measurements demonstrating the ISI performance and validating the working principle of the inlet. Finally, measurements of biological aerosol during a Saharan dust event (SDE) are presented, showing a first indication of enrichment of bio-material in sub-2 μm ice residuals.01A - Beitrag in wissenschaftlicher Zeitschrift