Auflistung nach Autor:in "Poulain, Laurent"
Gerade angezeigt 1 - 3 von 3
- Treffer pro Seite
- Sortieroptionen
Publikation Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol(Stockholm University Press, 2014) Zieger, Paul; Fierz-Schmidhauser, Rahel; Poulain, Laurent; Müller, Thomas; Birmili, Wolfram; Spindler, Gerald; Wiedensohler, Alfred; Baltensperger, Urs; Weingartner, Ernest01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Predicting hygroscopic growth using single particle chemical composition estimates(Wiley, 2014) Healy, Robert M.; Evans, Greg J.; Murphy, Michael; Jurányi, Zsófia; Tritscher, Torsten; Laborde, Marie; Weingartner, Ernest; Gysel, Martin; Poulain, Laurent; Kamilli, Katharina A.; Wiedensohler, Alfred; O'Connor, Ian P.; McGillicuddy, Eoin; Sodeau, John R.; Wenger, John C.Single particle mass spectral data, collected in Paris, France, have been used to predict hygroscopic growth at the single particle level. The mass fractions of black carbon, organic aerosol, ammonium, nitrate, and sulphate present in each particle were estimated using a combination of single particle mass spectrometer and bulk aerosol chemical composition measurements. The Zdanovskii‐Stokes‐Robinson (ZSR) approach was then applied to predict hygroscopic growth factors based on these mass fraction estimates. Smaller particles with high black carbon mass fractions and low inorganic ion mass fractions exhibited the lowest predicted growth factors, while larger particles with high inorganic ion mass fractions exhibited the highest growth factors. Growth factors were calculated for subsaturated relative humidity (90%) to enable comparison with hygroscopic tandem differential mobility analyzer measurements. Mean predicted and measured hygroscopic growth factors for 110, 165, and 265 nm particles were found to agree within 6%. Single particle‐based ZSR hygroscopicity estimates offer an advantage over bulk aerosol composition‐based hygroscopicity estimates by providing additional chemical mixing state information. External mixing can be determined for particles of a given diameter through examination of the predicted hygroscopic growth factor distributions. Using this approach, 110 nm and 265 nm particles were found to be predominantly internally mixed; however, external mixing of 165 nm particles was observed periodically when thinly coated and thickly coated black carbon particles were simultaneously detected. Single particle‐resolved chemical information will be useful for modeling efforts aimed at constraining cloud condensation nuclei activity and hygroscopic growth.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns(Copernicus, 2016) Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Henzing, Bas; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, UrsVertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at ∼ 100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to ∼ 700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34 ± 0.12 and 0.19 ± 0.07 for 500 nm particles, at ∼ 100 and ∼ 700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18 ± 0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from direct measurements was 0.28 ± 0.10, thus considerably higher than κ values measured in Italy in the fully mixed PBL.01A - Beitrag in wissenschaftlicher Zeitschrift