Auflistung nach Autor:in "Richter, René"
Gerade angezeigt 1 - 4 von 4
- Treffer pro Seite
- Sortieroptionen
Publikation Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments(Copernicus, 06.12.2010) Chirico, Roberto; DeCarlo, Peter F.; Heringa, Maarten F.; Tritscher, Torsten; Richter, René; Prévôt, André S. H.; Dommen, Josef; Weingartner, Ernest; Wehrle, Günther; Gysel, Martin; Laborde, Marie; Baltensperger, UrsDiesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23–0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.21 to 0.37.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Intercomparison study of six HTDMAs. results and recommendations(Copernicus, 24.07.2009) Duplissy, Jonathan; Gysel, Martin; Sjogren, S.; Meyer, Nickolas; Good, Nicholas; Kammermann, Lukas; Michaud, Vincent; Weigel, Ralf; Martins dos Santos, Sebastiao; Gruening, Carsten; Villani, P.; Laj, Paolo; Sellegri, Karine; Metzger, Axel; McFiggans, Gordon B.; Wehrle, Günther; Richter, René; Dommen, Josef; Ristovski, Zoran; Baltensperger, Urs; Weingartner, ErnestWe report on an intercomparison of six different hygroscopicity tandem differential mobility analysers HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer(Copernicus, 23.06.2011) Heringa, Maarten F.; DeCarlo, Peter F.; Chirico, Roberto; Tritscher, Torsten; Dommen, Josef; Weingartner, Ernest; Richter, René; Wehrle, Günther; Prévôt, André S.H.; Baltensperger, UrsA series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19−0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at m/z 43 (f 43) to the total organic mass spectrum. The non-oxidized fragment C3H7+ has a considerable contribution at m/z 43 for the fresh OA with an increasing contribution of the oxygenated ion C2H3O+ during aging. After five hours of aging, the OA has a rather low C2H3O+ signal for a given CO2+ fraction, possibly indicating a higher ratio of acid to non-acid oxygenated compounds in wood burning OA compared to other oxygenated organic aerosol (OOA).01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene−NOₓ-H2O in a new reaction chamber for atmospheric chemistry and physics(American Chemical Society, 12.03.2005) Paulsen, Dwane; Dommen, Josef; Kalberer, Markus; Prévôt, André S.H.; Richter, René; Sax, Mirjam; Steinbacher, Martin; Weingartner, Ernest; Baltensperger, UrsA new environmental reaction smog chamber was built to simulate particle formation and growth similar to that expected in the atmosphere. The organic material is formed from nucleation of photooxidized organic compounds. The chamber is a 27 m³ fluorinated ethylene propylene (FEP) bag suspended in a temperature-controlled enclosure. Four xenon arc lamps (16 kW total) are used to irradiate primary gas components for experiments lasting up to 24 h. Experiments using irradiations of 1,3,5-trimethylbenzene−NOₓ−H2O at similar input concentrations without seed particles were used to determine particle number and volume concentration wall loss rates of 0.209 ± 0.018 and 0.139 ± 0.070 1/h, respectively. The particle formation was compared with and without propene.01A - Beitrag in wissenschaftlicher Zeitschrift