Auflistung nach Autor:in "Schäfer, Eberhard"
Gerade angezeigt 1 - 2 von 2
- Treffer pro Seite
- Sortieroptionen
Publikation An integrative model for phytochrome B mediated photomorphogenesis. From protein dynamics to physiology(Public Library of Science, 19.05.2010) Rausenberger, Julia; Hussong, Andrea; Kircher, Stefan; Kirchenbauer, Daniel; Timmer, Jens; Nagy, Ferenc; Schäfer, Eberhard; Fleck, Christian; Harmon, FrankPlants have evolved various sophisticated mechanisms to respond and adapt to changes of abiotic factors in their natural environment. Light is one of the most important abiotic environmental factors and it regulates plant growth and development throughout their entire life cycle. To monitor the intensity and spectral composition of the ambient light environment, plants have evolved multiple photoreceptors, including the red/far-red light-sensing phytochromes.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light(Cell Press, 02.09.2011) Rausenberger, Julia; Tscheuschler, Anke; Nordmeier, Wiebke; Wüst, Florian; Timmer, Jens; Schäfer, Eberhard; Fleck, Christian; Hiltbrunner, AndreasPhytochrome A (phyA) is the only photoreceptor in plants, initiating responses in far-red light and, as such, essential for survival in canopy shade. Although the absorption and the ratio of active versus total phyA are maximal in red light, far-red light is the most efficient trigger of phyA-dependent responses. Using a joint experimental-theoretical approach, we unravel the mechanism underlying this shift of the phyA action peak from red to far-red light and show that it relies on specific molecular interactions rather than on intrinsic changes to phyA's spectral properties. According to our model, the dissociation rate of the phyA-FHY1/FHL nuclear import complex is a principle determinant of the phyA action peak. The findings suggest how higher plants acquired the ability to sense far-red light from an ancestral photoreceptor tuned to respond to red light.01A - Beitrag in wissenschaftlicher Zeitschrift