Auflistung nach Autor:in "Sjögren, Staffan"
Gerade angezeigt 1 - 7 von 7
- Treffer pro Seite
- Sortieroptionen
Publikation Changes of fatty acid aerosol hygroscopicity induced by ozonolysis under humid conditions(Copernicus, 18.08.2008) Vesna, O.; Sjögren, Staffan; Weingartner, Ernest; Samburova, Vera; Kalberer, Markus; Gäggeler, Heinz W.; Ammann, MarkusUnsaturated fatty acids are important constituents of the organic fraction of atmospheric aerosols originating from biogenic or combustion sources. Oxidative processing of these may change their interaction with water and thus affect their effect on climate. The ozonolysis of oleic and arachidonic acid aerosol particles was studied under humid conditions in a flow reactor at ozone exposures close to atmospheric levels, at concentrations between 0.5 and 2 ppm. While oleic acid is a widely used proxy for such studies, arachidonic acid represents polyunsaturated fatty acids, which may decompose into hygroscopic products. The hygroscopic (diameter) growth factor at 93% relative humidity (RH) of the oxidized arachidonic particles increased up to 1.09 with increasing RH during the ozonolysis. In contrast, the growth factor of oleic acid was very low (1.03 at 93% RH) and was almost invariant to the ozonolysis conditions, so that oleic acid is not a good model to observe oxidation induced changes of hygroscopicity under atmospheric conditions. We show for arachidonic acid particles that the hygroscopic changes induced by humidity during ozonolysis are accompanied by about a doubling of the ratio of carboxylic acid protons to aliphatic protons. We suggest that, under humid conditions, the reaction of water with the Criegee intermediates might open a pathway for the formation of smaller acids that lead to more significant changes in hygroscopicity. Thus the effect of water to provide a competing pathway during ozonolysis observed in this study should be motivation to include water, which is ubiquitously present in and around atmospheric particles, in future studies related to aerosol particle aging.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Effect of humidity on nitric acid uptake to mineral dust aerosol particles(Copernicus, 20.06.2006) Vlasenko, Alexander; Sjögren, Staffan; Weingartner, Ernest; Stemmler, Konrad; Gäggeler, Heinz W.; Ammann, MarkusThis study presents the first laboratory observation of HNO3 uptake by airborne mineral dust particles. The model aerosols were generated by dry dispersion of Arizona Test Dust (ATD), SiO2, and by nebulizing a saturated solution of calcium carbonate. The uptake of 13N-labeled gaseous nitric acid was observed in a flow reactor on the 0.2–2 s reaction time scale at room temperature and atmospheric pressure. The amount of nitric acid appearing in the aerosol phase at the end of the flow tube was found to be a linear function of the aerosol surface area. SiO2 particles did not show any significant uptake, while the CaCO3 aerosol was found to be more reactive than ATD. Due to the smaller uncertainty associated with the reactive surface area in the case of suspended particles as compared to bulk powder samples, we believe that we provide an improved estimate of the rate of uptake of HNO3 to mineral dust. The fact that the rate of uptake was smaller at a concentration of 10^12 than at 10^11 was indicative of a complex uptake mechanism. The uptake coefficient averaged over the first 2 s of reaction time at a concentration of 10^12 molecules cm³ was found to increase with increasing relative humidity, from 0.022±0.007 at 12% RH to 0.113±0.017 at 73% RH , which was attributed to an increasing degree of solvation of the more basic minerals. The extended processing of the dust by higher concentrations of HNO3 at 85% RH led to a water soluble coating on the particles and enhanced their hygroscopicity.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Generation of submicron Arizona test dust aerosol. Chemical and hygroscopic properties(Taylor & Francis, 20.10.2005) Vlasenko, Alexander; Sjögren, Staffan; Weingartner, Ernest; Gäggeler, Heinz W.; Ammann, MarkusThis article describes a submicron dust aerosol generation system based on a commercially available dust disperser intended for use in laboratory studies of heterogeneous gas–aerosol interactions. Mineral dust particles are resuspended from Arizona Test Dust (ATD) powder as a case study. The system output in terms of number and surface area is adjustable and stable enough for aerosol flow reactor studies. Particles produced are in the 30–1000 nm size range with a lognormal shape of the number size distribution. The particles are characterized with respect to morphology, electrical properties, hygroscopic properties, and chemical composition. Submicron particle elemental composition is found to be similar for the particle surface and bulk as revealed by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. A significant difference in chemical composition is found between the submicron aerosol and the ATD bulk powder from which it was generated. The anionic composition of the water-soluble fraction of this dust sample is dominated by sulfate. Resuspended dust particles show, as expected, nonhygroscopic behavior in a humid environment. Small hygroscopic growth of about 1% (relative change in mobility diameter) was observed for 100 nm particles when the relative humidity (RH) was changed from 12 to 94%. Particles larger than 100–200 nm shrank about 1% once exposed to RH > 90%. This was interpreted as a restructuring of the larger agglomerates of dust to particles of smaller mobility diameter, under the influence of water vapor.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures(Elsevier, 02/2007) Sjögren, Staffan; Gysel, Martin; Weingartner, Ernest; Baltensperger, Urs; Cubison, Michael J.; Coe, Hugh; Zardini, Alessandro A.; Marcolli, Claudia; Krieger, Ulrich K.; Peter, ThomasThe hygroscopic growth of solid aerosol particles consisting of mixtures of ammonium sulfate and either adipic acid or Aldrich humic acid sodium salt was characterized with a hygroscopicity tandem differential mobility analyzer and an electrodynamic balance. In particular, the time required for the aerosol particle phase and the surrounding water vapor to reach equilibrium at high relative humidity (RH) was investigated. Depending on the chemical composition of the particles, residence times of > 40 s were required to reach equilibrium at 85% RH, yielding up to a 7% reduction in the measured hygroscopic growth factors from measurements at 4 s residence time compared to measurements at equilibrium. We suggest that the solid organic compound, when present as the dominant component, encloses the water-soluble inorganic salt in veins and cavities, resulting in the observed slow water uptake. Comparison with predictions from the Zdanovskii-Stokes-Robinson relation shows enhanced water uptake of the mixed particles. This is explained with the presence of the salt solution in veins resulting in a negative curvature of the solution meniscus at the opening of the vein. In conclusion, it is important for studies of mixtures of water soluble compounds with insoluble material to allow for sufficient residence time at the specified humidity to reach equilibrium before the hygroscopicity measurements.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland(Copernicus, 30.09.2008) Sjögren, Staffan; Gysel, Martin; Weingartner, Ernest; Alfarra, M. Rami; Duplissy, Jonathan; Cozic, Julie; Crosier, Jonathan; Coe, Hugh; Baltensperger, UrsData from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (GF, i.e. the relative change in particle diameter from dry diameter, D0, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The GF values at 85% RH (D0=100 nm) were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal GF distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the GF measurements. This made it possible to estimate the apparent ensemble mean GF of the organics (GForg) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. GForg was found to be ~1.20 at aw=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Secondary organic aerosols from anthropogenic and biogenic precursors(Royal Society of Chemistry, 2005) Baltensperger, Urs; Kalberer, Markus; Dommen, Josef; Paulsen, Dwane; Alfarra, M. Rami; Coe, Hugh; Fisseha, Rebeka; Gascho, Astrid; Gysel, Martin; Nyeki, Stephan; Sax, Mirjam; Steinbacher, Martin; Prévôt, André S.H.; Sjögren, Staffan; Weingartner, Ernest; Zenobi, RenatoSecondary organic aerosol (SOA) formation from the photooxidation of an anthropogenic (1,3,5-trimethylbenzene) and a biogenic (α-pinene) precursor was investigated at the new PSI smog chamber. The chemistry of the gas phase was followed by proton transfer reaction mass spectrometry, while the aerosol chemistry was investigated with aerosol mass spectrometry, ion chromatography, laser desorption ionization mass spectrometry, and infrared spectroscopy, along with volatility and hygroscopicity studies. Evidence for oligomer formation for SOA from both precursors was given by an increasing abundance of compounds with a high molecular weight (up to 1000 Da) and by an increasing thermal stability with increasing aging time. The results were compared to data obtained from ambient aerosol samples, revealing a number of similar features.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation The influence of small aerosol particles on the properties of water and ice clouds(Royal Society of Chemistry, 09.08.2008) Choularton, Thomas W.; Bower, Keith N.; Weingartner, Ernest; Crawford, Ian; Coe, Hugh; Gallagher, Martin W.; Flynn, Michael; Crosier, Jonathan; Connolly, Paul; Targino, Admir Créso; Alfarra, M. Rami; Baltensperger, Urs; Sjögren, Staffan; Verheggen, Bart; Cozic, Julie; Gysel, MartinIn this paper, results are presented of the influence of small organic- and soot-containing particles on the formation of water and ice clouds. There is strong evidence that these particles have grown from nano particle seeds produced by the combustion of oil products. Two series of field experiments are selected to represent the observations made. The first is the CLoud-Aerosol Characterisation Experiment (CLACE) series of experiments performed at a high Alpine site (Jungfraujoch), where cloud was in contact with the ground and the measuring station. Both water and ice clouds were examined at different times of the year. The second series of experiments is the CLOud Processing of regional Air Pollution advecting over land and sea (CLOPAP) series, where ageing pollution aerosol from UK cities was observed, from an airborne platform, to interact with warm stratocumulus cloud in a cloud-capped atmospheric boundary layer. Combining the results it is shown that aged pollution aerosol consists of an internal mixture of organics, sulfate, nitrate and ammonium, the organic component is dominated by highly oxidized secondary material. The relative contributions and absolute loadings of the components vary with location and season. However, these aerosols act as Cloud Condensation Nuclei (CCN) and much of the organic material, along with the other species, is incorporated into cloud droplets. In ice and mixed phase cloud, it is observed that very sharp transitions (extending over just a few metres) are present between highly glaciated regions and regions consisting of supercooled water. This is a unique finding; however, aircraft observations in cumulus suggest that this kind of structure may be found in these cloud types too. It is suggested that this sharp transition is caused by ice nucleation initiated by oxidised organic aerosol coated with sulfate in more polluted regions of cloud, sometimes enhanced by secondary ice particle production in these regions.01A - Beitrag in wissenschaftlicher Zeitschrift