Auflistung nach Autor:in "Sun, Junying"
Gerade angezeigt 1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- PublikationCharacterization and intercomparison of aerosol absorption photometers. result of two intercomparison workshops(Copernicus, 2011) Müller, Thomas; Henzing, Bas; de Leeuw, Gerrit; Wiedensohler, Alfred; Alastuey, Andrés; Angelov, H.; Bizjak, Milan; Collaud Coen, Martine; Engström, J. E.; Gruening, Carsten; Hillamo, Risto; Hoffer, András; Imre, Kornélia; Ivanow, Petko; Jennings, Stephen G.; Sun, Junying; Kalivitis, Nikos; Karlsson, Hanna; Komppula, Mikka; Laj, Paolo; Li, S.-M.; Lunder, Chris; Marinoni, Angela; Martins dos Santos, Sebastiao; Moerman, Marcel; Nowak, Andreas; Ogren, John A.; Petzold, Andreas; Pichon, Jean Marc; Rodriquez, Sergio; Sharma, Sangeeta; Sheridan, Patrick J.; Teinilä, Kimmo; Tuch, Thomas; Viana, Mar; Virkkula, Aki; Weingartner, Ernest; Wilhelm, R.; Wang, Yaqiang [in: Atmospheric Measurement Techniques]Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationClimatology of aerosol radiative properties in the free troposphere(Elsevier, 04.12.2011) Andrews, Elisabeth; Ogren, John A.; Bonasoni, Paolo; Marinoni, Angela; Cuevas, Emilio; Rodríguez, Sergio Hugo Sánchez; Sun, Junying; Jaffe, Daniel A.; Fischer, Emily V.; Baltensperger, Urs; Weingartner, Ernest; Collaud Coen, Martine; Sharma, Sangeeta; Macdonald, Annemarie; Leaitch, W. Richard; Lin, Neng Huei; Laj, Paolo; Arsov, Todor; Kalapov, Ivo; Jefferson, Anne; Sheridan, Patrick [in: Atmospheric Research]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationExplaining global surface aerosol number concentrations in terms of primary emissions and particle formation(Copernicus, 26.05.2010) Spracklen, Dominick V.; Carslaw, Kenneth S.; Merikanto, Joonas; Mann, Graham W.; Reddington, Carly L.; Pickering, S.; Ogren, John A.; Andrews, Elisabeth; Baltensperger, Urs; Weingartner, Ernest; Boy, Michael; Kulmala, Markku; Laakso, Lauri; Lihavainen, Heikki; Kivekäs, Niku; Komppula, Mika; Mihalopoulos, Ninolaos; Kouvarakis, Giorgos; Jennings, Stephen G.; O'Dowd, Collin D.; Birmili, Wolfram; Wiedensohler, Alfred; Weller, Rolf; Gras, John; Laj, Paolo; Sellegri, Karine; Bonn, Boris; Krejci, Radovan; Laaksonen, Ari; Hamed, Amar; Minikin, Andreas; Harrison, Roy Michael; Talbot, Robert; Sun, Junying [in: Atmospheric Chemistry and Physics]We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT) and 1000–10 000 cm−3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental BL were also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.01A - Beitrag in wissenschaftlicher Zeitschrift