Auflistung nach Autor:in "Vlasenko, Alexander"
Gerade angezeigt 1 - 2 von 2
- Treffer pro Seite
- Sortieroptionen
Publikation Effect of humidity on nitric acid uptake to mineral dust aerosol particles(Copernicus, 20.06.2006) Vlasenko, Alexander; Sjögren, Staffan; Weingartner, Ernest; Stemmler, Konrad; Gäggeler, Heinz W.; Ammann, MarkusThis study presents the first laboratory observation of HNO3 uptake by airborne mineral dust particles. The model aerosols were generated by dry dispersion of Arizona Test Dust (ATD), SiO2, and by nebulizing a saturated solution of calcium carbonate. The uptake of 13N-labeled gaseous nitric acid was observed in a flow reactor on the 0.2–2 s reaction time scale at room temperature and atmospheric pressure. The amount of nitric acid appearing in the aerosol phase at the end of the flow tube was found to be a linear function of the aerosol surface area. SiO2 particles did not show any significant uptake, while the CaCO3 aerosol was found to be more reactive than ATD. Due to the smaller uncertainty associated with the reactive surface area in the case of suspended particles as compared to bulk powder samples, we believe that we provide an improved estimate of the rate of uptake of HNO3 to mineral dust. The fact that the rate of uptake was smaller at a concentration of 10^12 than at 10^11 was indicative of a complex uptake mechanism. The uptake coefficient averaged over the first 2 s of reaction time at a concentration of 10^12 molecules cm³ was found to increase with increasing relative humidity, from 0.022±0.007 at 12% RH to 0.113±0.017 at 73% RH , which was attributed to an increasing degree of solvation of the more basic minerals. The extended processing of the dust by higher concentrations of HNO3 at 85% RH led to a water soluble coating on the particles and enhanced their hygroscopicity.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Generation of submicron Arizona test dust aerosol. Chemical and hygroscopic properties(Taylor & Francis, 20.10.2005) Vlasenko, Alexander; Sjögren, Staffan; Weingartner, Ernest; Gäggeler, Heinz W.; Ammann, MarkusThis article describes a submicron dust aerosol generation system based on a commercially available dust disperser intended for use in laboratory studies of heterogeneous gas–aerosol interactions. Mineral dust particles are resuspended from Arizona Test Dust (ATD) powder as a case study. The system output in terms of number and surface area is adjustable and stable enough for aerosol flow reactor studies. Particles produced are in the 30–1000 nm size range with a lognormal shape of the number size distribution. The particles are characterized with respect to morphology, electrical properties, hygroscopic properties, and chemical composition. Submicron particle elemental composition is found to be similar for the particle surface and bulk as revealed by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. A significant difference in chemical composition is found between the submicron aerosol and the ATD bulk powder from which it was generated. The anionic composition of the water-soluble fraction of this dust sample is dominated by sulfate. Resuspended dust particles show, as expected, nonhygroscopic behavior in a humid environment. Small hygroscopic growth of about 1% (relative change in mobility diameter) was observed for 100 nm particles when the relative humidity (RH) was changed from 12 to 94%. Particles larger than 100–200 nm shrank about 1% once exposed to RH > 90%. This was interpreted as a restructuring of the larger agglomerates of dust to particles of smaller mobility diameter, under the influence of water vapor.01A - Beitrag in wissenschaftlicher Zeitschrift