Auflistung nach Autor:in "Vuilleumier, Laurent"
Gerade angezeigt 1 - 2 von 2
- Treffer pro Seite
- Sortieroptionen
Publikation Analysis of long‐term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport(Wiley, 2015) Herrmann, Erik; Weingartner, Ernest; Henne, Stephan; Vuilleumier, Laurent; Bukowiecki, Nicolas; Steinbacher, Martin; Conen, Franz; Collaud Coen, Martine; Hammer, Emanuel; Jurányi, Zsófia; Baltensperger, Urs; Gysel, MartinSix years of aerosol size distribution measurements between 20 and 600 nm diameters and total aerosol concentration above 10 nm from March 2008 to February 2014 at the high‐alpine site Jungfraujoch are presented. The size distribution was found to be typically bimodal with mode diameters and widths relatively stable throughout the year and the observation period. New particle formation was observed on 14.5% of all days without a seasonal preference. Particles typically grew only into the Aitken mode and did not reach cloud condensation nucleus (CCN) sizes on the time scale of several days. Growth of preexisting particles in the Aitken mode, on average, contributed very few CCN. We concluded that the dominant fraction of CCN at Jungfraujoch originated in the boundary layer. A number of approaches were used to distinguish free tropospheric (FT) conditions and episodes with planetary boundary layer (PBL) influence. In the absence of PBL injections, the concentration of particles larger than 90 nm (N90, roughly corresponding to the CCN concentration) reached a value ~40 cm−3 while PBL influence caused N90 concentrations of several hundred or even 1000 cm−3. Comparing three criteria for free tropospheric conditions, we found FT prevalence for 39% of the time with over 60% during winter and below 20% during summer. It is noteworthy that a simple criterion based on standard trace gas measurements appeared to outperform alternative approaches.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.)(Copernicus, 08.08.2012) Zieger, Paul; Kienast-Sjögren, Erika; Starace, Michela; von Bismarck, Jonas; Bukowiecki, Nicolas; Baltensperger, Urs; Wienhold, Frank Gunther; Peter, Thomas; Ruhtz, Thomas; Collaud Coen, Martine; Vuilleumier, Laurent; Maier, Olaf; Emili, Emanuele; Popp, Christian; Weingartner, ErnestThis paper presents results of the extensive field campaign CLACE 2010 (Cloud and Aerosol Characterization Experiment) performed in summer 2010 at the Jungfraujoch (JFJ) and the Kleine Scheidegg (KLS) in the Swiss Alps. The main goal of this campaign was to investigate the vertical variability of aerosol optical properties around the JFJ and to show the consistency of the different employed measurement techniques considering explicitly the effects of relative humidity (RH) on the aerosol light scattering. Various aerosol optical and microphysical parameters were recorded using in-situ and remote sensing techniques. In-situ measurements of aerosol size distribution, light scattering, light absorption and scattering enhancement due to water uptake were performed at the JFJ at 3580 m a.s.l.. A unique set-up allowed remote sensing measurements of aerosol columnar and vertical properties from the KLS located about 1500 m below and within the line of sight to the JFJ (horizontal distance of approx. 4.5 km). In addition, two satellite retrievals from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) as well as back trajectory analyses were added to the comparison to account for a wider geographical context. All in-situ and remote sensing measurements were in clear correspondence. The ambient extinction coefficient measured in situ at the JFJ agreed well with the KLS-based LIDAR (Light Detection and Ranging) retrieval at the altitude-level of the JFJ under plausible assumptions on the LIDAR ratio. However, we can show that the quality of this comparison is affected by orographic effects due to the exposed location of the JFJ on a saddle between two mountains and next to a large glacier. The local RH around the JFJ was often higher than in the optical path of the LIDAR measurement, especially when the wind originated from the south via the glacier, leading to orographic clouds which remained lower than the LIDAR beam. Furthermore, the dominance of long-range transported Saharan dust was observed in all easurements for several days, however only for a shorter time period in the in-situ measurements due to the vertical structure of the dust plume. The optical properties of the aerosol column retrieved from SEVIRI and MODIS showed the same magnitude and a similar temporal evolution as the measurements at the KLS and the JFJ. Remaining differences are attributed to the complex terrain and simplifications in the aerosol retrieval scheme in general.01A - Beitrag in wissenschaftlicher Zeitschrift