Institut Geomatik

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/9

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 2 von 2
  • Vorschaubild
    Publikation
    Open urban and forest datasets from a high-performance mobile mapping backpack. A contribution for advancing the creation of digital city twins
    (International Society of Photogrammetry and Remote Sensing, 2021) Blaser, Stefan; Meyer, Jonas; Nebiker, Stephan
    With this contribution, we describe and publish two high-quality street-level datasets, captured with a portable high-performance Mobile Mapping System (MMS). The datasets will be freely available for scientific use. Both datasets, from a city centre and a forest represent area-wide street-level reality captures which can be used e.g. for establishing cloud-based frameworks for infrastructure management as well as for smart city and forestry applications. The quality of these data sets has been thoroughly evaluated and demonstrated. For example, georeferencing accuracies in the centimetre range using these datasets in combination with image-based georeferencing have been achieved. Both high-quality multi sensor system street-level datasets are suitable for evaluating and improving methods for multiple tasks related to high-precision 3D reality capture and the creation of digital twins. Potential applications range from localization and georeferencing, dense image matching and 3D reconstruction to combined methods such as simultaneous localization and mapping and structure-from-motion as well as classification and scene interpretation. Our dataset is available online at: https://www.fhnw.ch/habg/bimage-datasets
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Development of a portable high performance mobile mapping system using the robot operating system
    (Copernicus, 2018) Blaser, Stefan; Cavegn, Stefan; Nebiker, Stephan
    The rapid progression in digitalization in the construction industry and in facility management creates an enormous demand for the efficient and accurate reality capturing of indoor spaces. Cloud-based services based on georeferenced metric 3D imagery are already extensively used for infrastructure management in outdoor environments. The goal of our research is to enable such services for indoor applications as well. For this purpose, we designed a portable mobile mapping research platform with a strong focus on acquiring accurate 3D imagery. Our system consists of a multi-head panorama camera in combination with two multi-profile LiDAR scanners and a MEMS-based industrial grade IMU for LiDAR-based online and offline SLAM. Our modular implementation based on the Robot Operating System enables rapid adaptations of the sensor configuration and the acquisition software. The developed workflow provides for completely GNSS-independent data acquisition and camera pose estimation using LiDAR-based SLAM. Furthermore, we apply a novel image-based georeferencing approach for further improving camera poses. First performance evaluations show an improvement from LiDAR-based SLAM to image-based georeferencing by an order of magnitude: from 10–13 cm to 1.3–1.8 cm in absolute 3D point accuracy and from 8–12 cm to sub-centimeter in relative 3D point accuracy.
    01A - Beitrag in wissenschaftlicher Zeitschrift