Institut Geomatik

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/9

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 2 von 2
  • Vorschaubild
    Publikation
    Robust and accurate image-based georeferencing exploiting relative orientation constraints
    (Copernicus, 2018) Cavegn, Stefan; Blaser, S.; Nebiker, Stephan; Haala, N.
    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2–3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Development of a portable high performance mobile mapping system using the robot operating system
    (Copernicus, 2018) Blaser, Stefan; Cavegn, Stefan; Nebiker, Stephan
    The rapid progression in digitalization in the construction industry and in facility management creates an enormous demand for the efficient and accurate reality capturing of indoor spaces. Cloud-based services based on georeferenced metric 3D imagery are already extensively used for infrastructure management in outdoor environments. The goal of our research is to enable such services for indoor applications as well. For this purpose, we designed a portable mobile mapping research platform with a strong focus on acquiring accurate 3D imagery. Our system consists of a multi-head panorama camera in combination with two multi-profile LiDAR scanners and a MEMS-based industrial grade IMU for LiDAR-based online and offline SLAM. Our modular implementation based on the Robot Operating System enables rapid adaptations of the sensor configuration and the acquisition software. The developed workflow provides for completely GNSS-independent data acquisition and camera pose estimation using LiDAR-based SLAM. Furthermore, we apply a novel image-based georeferencing approach for further improving camera poses. First performance evaluations show an improvement from LiDAR-based SLAM to image-based georeferencing by an order of magnitude: from 10–13 cm to 1.3–1.8 cm in absolute 3D point accuracy and from 8–12 cm to sub-centimeter in relative 3D point accuracy.
    01A - Beitrag in wissenschaftlicher Zeitschrift