Listen
2 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Benchmarking High Density Image Matching for Oblique Airborne Imagery(09/2014) Cavegn, Stefan; Haala, Norbert; Nebiker, Stephan; Rothermel, Mathias; Tutzauer, PatrickBoth, improvements in camera technology and new pixel-wise matching approaches triggered the further development of software tools for image based 3D reconstruction. Meanwhile research groups as well as commercial vendors provide photogrammetric software to generate dense, reliable and accurate 3D point clouds and Digital Surface Models (DSM) from highly overlapping aerial images. In order to evaluate the potential of these algorithms in view of the ongoing software developments, a suitable test bed is provided by the ISPRS/EuroSDR initiative Benchmark on High Density Image Matching for DSM Computation. This paper discusses the proposed test scenario to investigate the potential of dense matching approaches for 3D data capture from oblique airborne imagery. For this purpose, an oblique aerial image block captured at a GSD of 6 cm in the west of Zürich by a Leica RCD30 Oblique Penta camera is used. Within this paper, the potential test scenario is demonstrated using matching results from two software packages, Agisoft PhotoScan and SURE from University of Stuttgart. As oblique images are frequently used for data capture at building facades, 3D point clouds are mainly investigated at such areas. Reference data from terrestrial laser scanning is used to evaluate data quality from dense image matching for several facade patches with respect to accuracy, density and reliability.04A - Beitrag SammelbandPublikation Evaluation of Matching Strategies for Image-Based Mobile Mapping(09/2015) Cavegn, Stefan; Haala, Norbert; Nebiker, Stephan; Rothermel, Mathias; Zwölfer, ThomasThe paper presents the implementation of a dense multi-view stereo matching pipeline for the evaluation of image sequences from a camera-based mobile mapping system. For this purpose the software system SURE is taken as a basis. Originally this system was developed to provide 3D point clouds or DEM from standard airborne and terrestrial image blocks. Since mobile mapping scenarios typically include stereo configurations with camera motion predominantly in viewing direction, processing steps like image rectification and structure computation of the existing processing pipeline had to be adapted. The presented investigations are based on imagery captured by the mobile mapping system of the Institute of Geomatics Engineering in the city center of Basel, Switzerland. For evaluation, reference point clouds from terrestrial laser scanning are used. Our first results already demonstrate a considerable increase in reliability and completeness of both depth maps and point clouds as result of the matching process.04B - Beitrag Konferenzschrift