Hochschule für Architektur, Bau und Geomatik FHNW
Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/6
Listen
2 Ergebnisse
Bereich: Suchergebnisse
Publikation Robust and accurate image-based georeferencing exploiting relative orientation constraints(Copernicus, 2018) Cavegn, Stefan; Blaser, S.; Nebiker, Stephan; Haala, N.Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2–3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Portable image-based high performance mobile mapping system in underground environments. System configuration and performance evalutation.(Copernicus, 2019) Blaser, S.; Nebiker, Stephan; Wisler, D.The progression in urbanization increases the need for different types of underground infrastructure. Consequently, infrastructure and life cycle management are rapidly gaining in importance. Mobile reality capturing systems and cloud-based services exploiting georeferenced metric 3D imagery are already extensively used for infrastructure management in outdoor environments. These services minimise dangerous and expensive field visits or measurement campaigns. In this paper, we introduce the BIMAGE Backpack, a portable image-based mobile mapping system for 3D data acquisition in indoor environments. The system consists of a multi-head panorama camera, two multi-profile laser scanners and an inertial measurement unit. With this system, we carried out underground measurement campaigns in the Hagerbach Test Gallery, located in Flums Hochwiese, Switzerland. For our performance evaluations in two different tunnel sections, we employed LiDAR SLAM as well as advanced image-based georeferencing. The obtained absolute accuracies were in the range from 6.2 to 7.4 cm. The relative accuracy, which for many applications is even more important, was in the range of 2–6 mm. These figures demonstrate an accuracy improvement of the subsequent image-based georeferencing over LiDAR SLAM by about an order of magnitude. The investigations show the application potential of image-based portable mobile mapping systems for infrastructure inventory and management in large underground facilities.01A - Beitrag in wissenschaftlicher Zeitschrift