Hochschule für Architektur, Bau und Geomatik FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/6

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Vorschaubild
    Publikation
    Transformation eines Kohlesilos zum Solarkraftwerk mit farbigen PV-Modulen und Second-Life Speicher
    (2016) Menn, Claudio; Steinke, Gregor; Dorusch, Falk; Geissler, Achim
    Das ehemalige Kohlesilo im Gundeldinger Feld in Basel wurde umgebaut und bietet nun Platz für Büros, Praxisräume, Konferenzzimmer und eine Zirkusschule. An den Fassaden und auf dem Dach wurde eine PV-Anlage mit farbigen Modulen installiert. Um den Eigenverbrauch der vor Ort erzeugten Elektrizität zu erhöhen und das öffentliche Stromnetz zu entlasten, werden gebrauchte Lithium-Ionen-Akkus aus Mobilitätsanwendungen als Second-Life Batteriespeicher eingesetzt. Die PV-Anlage und der Batteriespeicher werden in einem Messprojekt detailliert untersucht. As a visible sign of the shift from fossil fuels to renewable energies, the former coal silo and heating plant of the machine factory Sulzer Burckhardt AG in the „Gundeldinger Feld“ in Basel is covered with colored PV modules. As part of the remodeling of the silo into office spaces, a building integrated PV system is installed on two facades and on the roof. In order to increase the self-consumption of the electricity that is generated on-site and to relieve the public grid, previously used lithium-ion batteries from electric vehicles are used as Second Life battery energy storage. The PV system and battery storage are investigated in detail in a monitoring project.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Gebäudeintegration von gebrauchten Batterien als Second-Life Stromspeichersysteme. Eine techno-ökonomische und ökologische Bewertung
    (2016) Menn, Claudio; Geissler, Achim; Kim, David Pascal
    In vorliegendem Beitrag wird die Untersuchung der Nachnutzung von gebrauchten Batterien aus der Elektromobilität als Second-Life Stromspeicher (engl.: “Battery Energy Storage“ (BES)) in Gebäuden hinsichtlich technischer, ökonomischer und ökologischer Kriterien beschrieben. Basierend auf energiepolitischen Szenarien der Schweiz (Energieperspektiven 2050) werden eine Nettokapitalwert (engl.: „Net Present Value“ (NPV))- Analyse und eine Ökobilanzierung durchgeführt. Die Ergebnisse zu einem typischen Einfamilienhaus mit variierenden PV und Second-Life BES Systemgrössen (1-30 kWp und kWh) zeigen keinen positiven NPV25 (Investitionszeitraum 25 Jahre) gegeben Rahmenbedingen aus dem Jahre 2015 und einer betrachteten Anzahl CL (engl.: „Cycle Life“) von 800-6400. Für ein Second-Life BES mit mindestens 4800 CL resultiert eine optimale nutzbare Speicherkapazität von 2 kWh (≈ 10.7 Wh/m2 Energiebezugsfläche (AE)). Die optimale Systemgrösse der PV-Anlage beträgt dabei 3 kWp (≈ 16 Wp/m2 AE). Demgegenüber zeigt die Gesamtsystem-Betrachtung (PV inkl. Second-Life BES) eines typischen Mehrfamilienhauses ein NPV25 von durchschnittlich 1300-1500 CHF, gegeben eine Anzahl CL von 4800-6400. Die optimalen Systemgrössen betragen hierzu im Durchschnitt der betrachteten Szenarien 14 kWp (≈ 13 Wp/m2 AE) und 5 kWh (≈ 4.7 Wh/m2 AE) Speicher-kapazität. Der Vergleich von Second-Life BES zu herkömmlichen Stromspeichern (engl.: „conventional“ (C)) zeigt beim MFH nahezu bei allen untersuchten Systemgrössen einen Kostenvorteil für Second-Life BES. Die Stromgestehungskosten des Second-Life BES betragen 57 Rp./ kWh bei 4800 resp. 49 Rp./ kWh bei 6400 CL (gemittelt zwischen den untersuchten Szenarien). Der Kostenvorteil gegenüber C-BES beträgt dabei 110 % resp. 80 %. In einer Sensitivitätsanalyse werden die Basiskosten (Gehäuse, Verkabelung, Wechselrichter und Installation) und der Strompreis als Parameter mit grösstem Effekt auf die Profitabilität von BES identifiziert. Basierend auf energiepolitischen Szenarien der Schweiz kann mit einer Substitution von C-BES durch Second-Life BES von 0.34 – 0.60 % im Jahre 2035 und 1.3 – 2.0 % im Jahre 2050 zum jährlichen Reduktionsziel der CO2-Emissionen beigetragen werden. Voraussetzung dafür ist die Nutzung des verfügbaren Materials aus der Elektromobilität. Zudem liegt dieser Rechnung eine Substitutionsrate der Nennkapazität von C-BES Systemen mit Second-Life BES von 14 % zugrunde. Ein Anschlusspunkt für nachfolgende Forschungsarbeiten liegt in der Gestaltung von Ta-rifsystemen, die einen höheren Anreiz zur Stromspeicherung geben. Dabei ist in der Betrach-tung des Umweltnutzens von Second-Life BES die rasante Entwicklung von alternativen Bat-terietechnologien stärker zu berücksichtigen.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Gebäudeintegration von gebrauchten Batterien als Second-Life Stromspeichersysteme
    (Hochschule für Architektur, Bau und Geomatik FHNW, 09/2015) Menn, Claudio; Geissler, Achim; Kim, David Pascal; Dorusch, Falk
    In vorliegendem Beitrag wird die Untersuchung der Nachnutzung von gebrauchten Batterien aus der Elektromobilität als Second-Life Stromspeicher (engl.:“Battery Energy Storage“ (BES)) in Gebäuden hinsichtlich technischen, ökonomischen und ökologischen Kriterien beschrieben. Basierend auf energiepolitischen Szenarien der Schweiz (Energieperspektiven 2050) werden eine Nettokapitalwert (engl.: „Net Present Value“ (NPV))- Analyse und eine Ökobilanzierung durchgeführt. Die Ergebnisse zu einem typischen Einfamilienhaus mit variierenden PV und Second-Life BES Systemgrössen (1-30 kWp und kWh) zeigen keinen positiven NPV25 (Investitionszeitraum 25 Jahre) gegeben Rahmenbedingen aus dem Jahre 2015 und einer betrachteten Anzahl CL (engl.: „Cycle Life“ (CL)) von 800-6400. Für ein Second-Life BES mit mindestens 4800 CL resultiert eine optimale nutzbare Speicherkapazität von 2 kWh (≈ 10.7 Wh/m2 Energiebezugsfläche (AE)). Die optimale Systemgrösse der PV-Anlage beträgt dabei 3 kWp (≈ 16 Wp/m2 AE). Demgegenüber zeigt die Gesamtsystem-Betrachtung (PV inkl. Second-Life BES) eines typischen Mehrfamilienhauses ein NPV25 von durchschnittlich 1300-1500 CHF gegeben einer Anzahl CL von 4800-6400. Die optimalen Systemgrössen betragen hierzu im Durchschnitt der betrachteten Szenarien 14 kWp (≈ 13 Wp/m2 AE) und 5 kWh (≈ 4.7 Wh/m2 AE) Speicherkapazität. Der Vergleich von Second-Life BES zu herkömmlichen Stromspeichern (engl.: „conventional“ (C)) zeigt beim MFH nahezu bei allen untersuchten Systemgrössen einen Kostenvorteil für Second-Life BES. Die Stromgestehungskosten des Second-Life BES betragen 57 Rp./ kWh bei 4800 resp. 49 Rp./ kWh bei 6400 CL (gemittelt zwischen den untersuchten Szenarien). Der Kostenvorteil gegenüber C-BES ist hierzu 110 % resp. 80 %. In einer Sensitivitätsanalyse werden die Basiskosten (Gehäuse, Verkabelung, Wechselrichter und Installation) und der Strompreis als Parameter mit grösstem Effekt auf die Profitabilität von BES identifiziert. Basierend auf energiepolitischen Szenarien der Schweiz kann mit einer Substitution von C-BES durch Second-Life BES im Jahre 2035 0.34 – 0.60 % und im Jahre 2050 1.3 – 2.0 % zum jährlichen Reduktionsziel der CO2-Emissionen beigetragen werden. Voraussetzung dafür ist die Nutzung des verfügbaren Materials aus der Elektromobilität. Zudem liegt dieser Rechnung eine Substitutionsrate der Nennkapazität von C-BES Systemen mit Second-Life BES von 14 % zugrunde. Ein Anschlusspunkt für nachfolgende Forschungsarbeiten liegt in der Gestaltung von Tarifsystemen, die einen höheren Anreiz zur Stromspeicherung geben. Zudem ist in der Betrachtung des Umweltnutzens von Second-Life BES die rasante Entwicklung von alternativen Batterietechnologien stärker zu berücksichtigen.
    05 - Forschungs- oder Arbeitsbericht