Hochschule für Architektur, Bau und Geomatik FHNW
Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/6
Listen
20 Ergebnisse
Bereich: Suchergebnisse
Publikation Simulation of policies for automated ride-hailing and ride-pooling services(ETH Zürich, 01.08.2025) Kagho, Grace; Balac, Milos; van Eggermond, Michael; Erath, AlexanderAutomated vehicles are becoming more prevalent, and the disruption they would cause in combination with ride-hailing and ride-pooling services could be tremendous. Therefore, this study investigates the impacts of ride-hailing and ride-pooling automated fleets in two Swiss cities, Chur and Zurich, and potential policy measures to steer their operations towards more sustainable solutions. We employ the results of the stated preference survey and combine the estimated mode-choice and car ownership model results with the agent-based simulation, MATSim, to simulate the impacts of various scenarios. We find that automated ride-hailing (aRH) and automated ride-pooling (aRP) services do not seem to be competing for the same demand. In general, these services would lead to a reduction in total travel time but an increase in total vehicle distance, which is more substantial in transit-oriented Zurich than in car-oriented Chur. Furthermore, we found that even though the proposed policies increased vehicle occupancy, they did not manage to overcome the increase in VKT, signaling the need for more targeted policies and operational strategies. Finally, we provide recommendations for transport policy and future research based on our findings.05 - Forschungs- oder ArbeitsberichtPublikation How popular will ride hailing and ride pooling be with autonomous vehicles?(18.09.2024) van Eggermond, Michael; Erath, Alexander; Tanner, Reto06 - PräsentationPublikation Where to park your car at home?(18.07.2024) Erath, Alexander; van Eggermond, Michael; Tanner, RetoHow distric parking garages can complement existing parking options in dense urban neighborhoods06 - PräsentationPublikation Where to park your car at home? How distric parking garages can complement existing parking options in dense urban neighborhoods(18.07.2024) Erath, Alexander; van Eggermond, Michael; Tanner, Reto; Susilo, Yusak04B - Beitrag KonferenzschriftPublikation Image-based reality-capturing and 3D modelling for the creation of VR cycling simulations(Copernicus, 2021) Wahbeh, Wissam; Ammann, Manuela; Nebiker, Stephan; van Eggermond, Michael; Erath, AlexanderWith this paper, we present a novel approach for efficiently creating reality-based, high-fidelity urban 3D models for interactive VR cycling simulations. The foundation of these 3D models is accurately georeferenced street-level imagery, which can be captured using vehicle-based or portable mapping platforms. Depending on the desired type of urban model, the street-level imagery is either used for semi-automatically texturing an existing city model or for automatically creating textured 3D meshes from multi-view reconstructions using commercial off-the-shelf software. The resulting textured urban 3D model is then integrated with a real-time traffic simulation solution to create a VR framework based on the Unity game engine. Subsequently, the resulting urban scenes and different planning scenarios can be explored on a physical cycling simulator using a VR helmet or viewed as a 360-degree or conventional video. In addition, the VR environment can be used for augmented reality applications, e.g., mobile augmented reality maps. We apply this framework to a case study in the city of Berne to illustrate design variants of new cycling infrastructure at a major traffic junction to collect feedback from practitioners about the potential for practical applications in planning processes.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A virtual reality experiment to study pedestrian perception of future street scenarios(Nature, 2024) Argota Sánchez-Vaquerizo, Javier; Hausladen, Carina I.; Mahajan, Sachit; Matter, Marc; Siebenmann, Michael; van Eggermond, Michael; Helbing, DirkThe current allocation of street space is based on expected vehicular peak-hour flows. Flexible and adaptive use of this space can respond to changing needs. To evaluate the acceptability of flexible street layouts, several urban environments were designed and implemented in virtual reality. Participants explored these designs in immersive virtual reality in a mixed factorial experiment, in which we analysed self-reported, behavioural and physiological responses from participants. Distinct communication strategies were varied between subjects. Participants’ responses reveal a preference for familiar solutions. Unconventional street layouts are less preferred, perceived as unsafe and cause a measurably greater stress response. Furthermore, information provision focusing on comparisons lead participants to focus primarily on the drawbacks, instead of the advantages of novel scenarios. When being able to freely express thoughts and opinions, participants are focused more on the impact of space design on behaviour rather than the objective physical features themselves. Especially, this last finding suggests that it is vital to develop new street scenarios in an inclusive and democratic way: the success of innovating urban spaces depends on how well the vast diversity of citizens’ needs is considered and met.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Pedestrian and transit accessibility on a micro level. Results and challenges(University of Minnesota, 2016) van Eggermond, Michael; Erath, AlexanderIn thispaper, we connect two notions of accessibility that are more often than not considered separately: pedestrian accessibility and transit accessibility. We move away from the notion of zonal accessibility and measure fine-grained accessibility using door-to-door travel times. Two pedestrian networks are compared to a baseline scenario considering Euclidean distances for a large metropolitan area in which each individual building is considered as an activity opportunity. It is shown that pedestrian accessibility to jobs differs when pedestrian distances are approximated with different networks that are more representative of reality. Stop-to-stop public transport travel times are extracted from an agent-based simulation of public transport smart card data. The effect of less-than-optimal connections from transit to the pedestrian network, a local measurement, can be seen when calculating the accessibility to all destinations in the city. We suggest moving away from Euclidean-based distance analyses. Limitations can be found in the data available; the connection of buildings to the network becomes important, as does the inclusion of pedestrian crossings. For an inclusive accessibility measure, it will be necessary to calculate generalized costs for pedestrians and generate different pedestrian networks that reflect the limitations of different user groups.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation The role of location in residential location choice models. A review of literature(University of Minnesota, 2014) Schirmer, Patrick M.; van Eggermond, Michael; Axhausen, Kay W.Geospatial data available to researchers has increased tremendously over the last several decades, opening up opportunities to define residential location in multiple ways. This has led to a myriad of variables to define "location'' in residential location choice models. In this paper, we propose a common classification for location variables and categorize findings from a wide range of studies. We find similar preferences but different measurement methods and market segments for locations across different study regions. Recent studies consider the residential unit as choice alternative, making it possible to include a detailed description of the built environment. However, these studies are still limited in number and the inclusion of socioeconomic environment is more common. Transport land-use models can benefit from the inclusion of points of interest, such as schools, network distances, and the distance to previous locations. For the results of location choice models to be transferable to different disciplines, and avoid multi-collinearity, it is necessary to present different model specifications, including variables of interest in different disciplines.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Quantifying the effect of street design on driving speed on urban roads(Transportation Research Board, 01.01.2024) van Eggermond, Michael; Schaffner, Dorothea; Studer, Nora; Erath, AlexanderReducing driving speed is a key factor in improving road safety and combating noise emissions. For this reason, more and more cities across the world reduce speed limits urban in roads to 30 km/h (20 mph). According measures are implemented in major urban areas in Europe (e.g. Paris, Brussels) and the U.S. (e.g. New York City, Seattle). For the implementation of speed reductions main roads are of particular interest. Main roads in urban areas are different from residential roads in several ways, including, but not limited to the type of trips, vehicular mix and the presence of public transport, and are therefore limited in design options to reduce speeds. The study at hand reports on a virtual reality study conducted in Switzerland using a driving simulator. To assess whether road design influences driving speed, participants were asked to drive through a series of main roads in VR with varying speed limits and street designs. Speed and lateral position were recorded; in a follow-up survey, participants stated their preferred speed along the same segments and were asked about risk aversion. Results indicate that only certain designs result in slightly lower driving speeds, while controlling for self-reported risk aversion and driving style. Given the characteristics of main roads, measures reducing the (perceived) lane width are promising, but require further investigation.04B - Beitrag KonferenzschriftPublikation A Virtual reality experiment to study citizen perception of future street scenarios(SSRN, 31.03.2023) Sánchez-Vaquerizo, Javier Argota; Hausladen, Carina Ines; Mahajan, Sachit; Matter, Marc; Siebermann, Michael; van Eggermond, Michael; Helbing, DirkThe current allocation of street space is based on expected vehicular peak-hour flows. Flexible and adaptive use of this space can respond to changing needs. To evaluate the acceptance of flexible street layouts, several urban environments were designed and implemented in virtual reality. Participants explored these designs in immersive virtual reality in a 2x3 mixed factorial experiment, in which we analysed self-reported, behavioural and physiological responses from participants. Distinct communication strategies were varied between subjects. Participants' responses reveal a preference for familiar solutions. Unconventional street layouts are less preferred, perceived as unsafe and cause a measurably greater stress response. Furthermore, information provision focusing on comparisons led participants to focus primarily on the drawbacks, instead of the advantages, of novel scenarios. When being able to freely express thoughts and opinions, participants were focused more on the impact of the space on behaviour rather than the objective physical features themselves. Especially, this last finding suggests that it is vital to develop new street scenarios in an inclusive and democratic way: the success of innovating urban spaces depends on how well the vast diversity of citizens' needs is considered and met.05 - Forschungs- oder Arbeitsbericht