Hochschule für Technik und Umwelt FHNW
Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/35
Listen
Publikation Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation(Elsevier, 04/2011) Chirico, Roberto; Prevot, Andre S.H.; DeCarlo, Peter F.; Heringa, Maarten F.; Richter, Rene; Weingartner, Ernest; Baltensperger, UrsIn this study we present measurements of gas and aerosol phase composition for a mixed vehicle fleet in the Gubrist tunnel (Switzerland) in June 2008. PM1 composition measurements were made with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) and a Multi Angle Absorption Photometer (MAAP). Gas-phase measurements of CO, CO2, NOx and total hydrocarbons (THC) were performed with standard instrumentation. Weekdays had a characteristic diurnal pattern with 2 peaks in concentrations for all traffic related species corresponding to high vehicle density (∼300 ± 30 vehicles per 5 min) in the morning rush hour between 06:00 and 09:00 and in the afternoon rush hours from approximately 15:30 to 18:30. The emission factors (EF) of OA were heavily influenced by the OA mass loading. To exclude this partitioning effect, only organic aerosol mass concentrations from 60 μg m−3 to 90 μg m−3 were considered and for these conditions the EF(OA) value for HDV was 33.7 ± 2.3 mg km−1 for a temperature inside the tunnel of 20–25 °C. This value is not directly applicable to ambient conditions because it is derived from OA mass concentrations that are roughly a factor of 10 higher than typical ambient concentrations. An even higher EF(OA)HDV value of 47.4 ± 1.6 mg km−1 was obtained when the linear fit was applied to all data points including OA concentrations up to 120 μg m−3. Similar to the increasing EF, the OA/BC ratio in the tunnel was also affected by the organic loading and it increased by a factor of ∼3 over the OA range 10–120 μg m−3. This means that also the OA emission factors at ambient concentrations of around 5–10 μg m−3 would be 2–3 times lower than the emission factor given above. For OA concentrations lower than 40 μg m−3 the OA/BC mass ratio was below 1, while at an OA concentration of 100–120 μg m−3 the OA/BC ratio was ∼1.5. The AMS mass spectra (MS) acquired in the tunnel were highly correlated with the primary organic aerosol (POA) MS from a EURO 3 diesel vehicle with a speed similar to the average tunnel speed.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols(American Chemical Society, 21.11.2001) Gysel, Martin; Weingartner, Ernest; Baltensperger, UrsA Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) system has been used to measure hygroscopic growth curves and deliquescence relative humidities (DRH) of laboratory generated (NH4)2SO4, NaCl, and NaNO3 particles at temperatures T = 20 °C and −10 °C. Good agreement (better than 3.5%) between measured growth curves and Köhler theory was found using empirical temperature and concentration dependent values for water activity, solution density, and surface tension. The measured growth curves only experience a small temperature dependence in the observed temperature range. Therefore, to a first approximation, it is possible to neglect the temperature dependence of the water activity for theoretical calculations in the temperature range −10 °C < T < 25 °C. The small differences between experiment and theory, which were predominantly observed for NaCl particles, are probably caused by a small amount of water adsorbed on the “dry” crystals. It was also observed that these particles experience a significant restructuring at relative humidity RH < DRH, which was also taken into account for a comparison with theoretical curves. If salt particles are used for instrument calibration, precautions regarding the dry particle diameter have to be taken.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Properties of jet engine combustion particles during the PartEmis experiment. Microphysics and Chemistry(Wiley, 15.07.2003) Petzold, Andreas; Stein, Claudia; Nyeki, Stephan; Gysel, Martin; Weingartner, Ernest; Baltensperger, Urs; Giebl, Heinrich; Hitzenberger, Regina; Döpelheuer, Andreas; Vrchoticky, Susi; Puxbaum, Hans; Johnson, M.; Hurley, Chris D.; Marsh, Richard; Wilson, Chris W.The particles emitted from an aircraft engine combustor were investigated in the European project PartEmis. Measured aerosol properties were mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, and cloud condensation nuclei (CCN) activation potential. The combustor operation conditions corresponded to modern and older engine gas path temperatures at cruise altitude, with fuel sulphur contents (FSC) of 50, 410, and 1270 μg/g. Operation conditions and FSC showed only a weak influence on the microphysical aerosol properties, except for hygroscopic and CCN properties. Particles of size D ≥ 30 nm were almost entirely internally mixed. Particles of sizes D < 20 nm showed a considerable volume fraction of compounds that volatilise at 390 K (10–15%) and 573 K (4–10%), while respective fractions decreased to <5% for particles of size D ≥ 50 nm.01A - Beitrag in wissenschaftlicher Zeitschrift