Hochschule für Technik und Umwelt FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/35

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation
    (Elsevier, 04/2011) Chirico, Roberto; Prevot, Andre S.H.; DeCarlo, Peter F.; Heringa, Maarten F.; Richter, Rene; Weingartner, Ernest; Baltensperger, Urs
    In this study we present measurements of gas and aerosol phase composition for a mixed vehicle fleet in the Gubrist tunnel (Switzerland) in June 2008. PM1 composition measurements were made with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) and a Multi Angle Absorption Photometer (MAAP). Gas-phase measurements of CO, CO2, NOx and total hydrocarbons (THC) were performed with standard instrumentation. Weekdays had a characteristic diurnal pattern with 2 peaks in concentrations for all traffic related species corresponding to high vehicle density (∼300 ± 30 vehicles per 5 min) in the morning rush hour between 06:00 and 09:00 and in the afternoon rush hours from approximately 15:30 to 18:30. The emission factors (EF) of OA were heavily influenced by the OA mass loading. To exclude this partitioning effect, only organic aerosol mass concentrations from 60 μg m−3 to 90 μg m−3 were considered and for these conditions the EF(OA) value for HDV was 33.7 ± 2.3 mg km−1 for a temperature inside the tunnel of 20–25 °C. This value is not directly applicable to ambient conditions because it is derived from OA mass concentrations that are roughly a factor of 10 higher than typical ambient concentrations. An even higher EF(OA)HDV value of 47.4 ± 1.6 mg km−1 was obtained when the linear fit was applied to all data points including OA concentrations up to 120 μg m−3. Similar to the increasing EF, the OA/BC ratio in the tunnel was also affected by the organic loading and it increased by a factor of ∼3 over the OA range 10–120 μg m−3. This means that also the OA emission factors at ambient concentrations of around 5–10 μg m−3 would be 2–3 times lower than the emission factor given above. For OA concentrations lower than 40 μg m−3 the OA/BC mass ratio was below 1, while at an OA concentration of 100–120 μg m−3 the OA/BC ratio was ∼1.5. The AMS mass spectra (MS) acquired in the tunnel were highly correlated with the primary organic aerosol (POA) MS from a EURO 3 diesel vehicle with a speed similar to the average tunnel speed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Hygroscopic properties of fresh and aged wood burning particles
    (Elsevier, 2013) Martin, Maria; Tritscher, Torsten; Jurányi, Zsófia; Heringa, Maarten F.; Sierau, Berko; Weingartner, Ernest; Chirico, Roberto; Gysel, Martin; Prévôt, André S.H.; Baltensperger, Urs; Lohmann, Ulrike
    01A - Beitrag in wissenschaftlicher Zeitschrift