Hochschule für Technik und Umwelt FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/35

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Vorschaubild
    Publikation
    Equation of state and thermodynamic properties for mixtures of H2O,O2, N2, and CO2 from ambient up to 1000 K and 280 MPa
    (Elsevier, 05.03.2019) Mangold, Fabienne; Pilz, Stephan; Bjelic, Sasa; Vogel, Frédéric
    Supercritical water oxidation (SCWO) is an effective technique to treat wet organic wastes. Its modeling requires an accurate calculation of thermodynamic properties. In this work an equation of state (EOS) is proposed which accurately predicts the thermodynamic state of mixtures of water, oxygen, nitrogen, and carbon dioxide for a wide range of compositions, temperatures, and pressures including supercritical conditions. The EOS includes a volume translation, an evolved alpha-function and non-quadratic mixing rules. The introduced parameters are regressed to experimental data. From the pressure-explicit EOS, enthalpy, specific heats at constant volume and constant pressure, and fugacity coefficients are derived and calculated. The binary mixtures H2O/O2, H2O/N2, H2O/CO2, N2/CO2 as well as the ternary mixture H2O/O2/N2 are well predicted by the proposed EOS with relative errors below 10% and 15%, respectively. The region of low temperature and high pressure is most difficult to predict with relative errors up to 20%.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    A prototype system for the hydrothermal oxidation of feces
    (Elsevier, 14.11.2022) Affolter, Joël; Brunner, Thomas; Hagger, Nicola; Vogel, Frédéric
    To ensure access to safe sanitation facilities in rural communities, cheap off-grid technologies need to be developed to substitute pit latrines and open defecation. In this study, we present a prototype system based on hydrothermal oxidation, which, under optimal conditions, converts a fecal sludge simulant almost completely to CO2 and water, leaving behind only a carbon-poor aqueous phase with the minerals. The prototype has been designed to process the feces from two households. This technology does not only enable a fast and complete conversion, but is potentially also very energy efficient, as the feed does not require any pre-treatment or drying. The system was found to effectively remove 97–99% of the total organic carbon within a reaction time of 600 s under an external energy demand of roughly 4 kWh per kilogram of wet feces by using the oxygen in air as an oxidant. A total of ten experiments with varying injection pressure, total solids content of the feed, and residence time in the reactor were performed to find experimental settings with high conversion. Only when the residence time was decreased from 600 to 300 s did the conversion fall significantly below 97%. To reach a target value of 99.9% TOC conversion, the reactor temperature and/or the residence time must be increased further. To achieve a system applicable in regions with no connection to the energy grid, the thermal loss of the reactor insulation needs to be lowered further to achieve an overall thermally self-sustaining operation.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Hydrothermal oxidation of fecal sludge. Experimental investigations and kinetic modeling
    (American Chemical Society, 17.10.2016) Hübner, Tobias; Roth, Markus; Vogel, Frédéric
    Hydrothermal oxidation (HTO) provides an efficient technique to completely destroy wet organic wastes. In this study, HTO was applied to treat fecal sludge at well-defined experimental conditions. Four different kinetic models were adjusted to the obtained data. Among others, a distributed activation energy model (DAEM) was applied. A total of 33 experiments were carried out in an unstirred batch reactor with pressurized air as the oxidant at temperatures of <470 °C, oxygen-to-fuel equivalence ratios between 0 and 1.9, feed concentrations between 3.9 and 9.8 molTOC L−1 (TOC = total organic carbon), and reaction times between 86 and 1572 s. Decomposition of the fecal sludge was monitored by means of the conversion of TOC to CO2 and CO. In the presence of oxygen, ignition of the reaction was observed around 300 °C, followed by further rapid decomposition of the organic material. The TOC was completely decomposed to CO2 within 25 min at 470 °C and an oxygen-to-fuel equivalence ratio of 1.2. CO was formed as an intermediate product, and no other combustible products were found in the gas. At certain reaction conditions, the formation of unwanted coke and tarlike products occurred. The reaction temperature and oxygen-to-fuel equivalence ratio showed a significant influence on TOC conversion, while the initial TOC concentration did not. Conversion of TOC to CO2 could be well described with a first-order rate law and an activation energy of 39 kJ mol−1.
    01A - Beitrag in wissenschaftlicher Zeitschrift