Hochschule für Technik und Umwelt FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/35

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 10 von 64
  • Publikation
    Evidence for the role of organics in aerosol particle formation under atmospheric conditions
    (National Academy of Sciences, 19.01.2010) Metzger, Axel; Verheggen, Bart; Dommen, Josef; Duplissy, Jonathan; Prévôt, André S.H.; Weingartner, Ernest; Riipinen, Ilona; Kulmala, Markku; Spracklen, Dominick V.; Carslaw, Kenneth S.; Baltensperger, Urs
    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Aerosol nucleation and growth in a mixture of sulfuric acid/alpha-pinene oxidation products at the CERN CLOUD chamber
    (AIP Publishing, 2013) Tröstl, Jasmin; Bianchi, Federico; Kürten, Andreas; Rondo, Linda; Simon, Mario; Sarnela, Nina; Jokinen, Tuija; Heinritzi, Martin; Dommen, Josef; Kirkby, Jasper; Weingartner, Ernest; Baltensperger, Urs; DeMott, Paul J.; O'Dowd, Colin D.
    The role of α-pinene in aerosol nucleation and growth was investigated using the CERN CLOUD chamber, a nano scanning mobility particle sizer (nanoSMPS) and several condensation particle counters (CPCs) with different diameter cut-offs. Different oxidation conditions for α-pinene - OH⋅ vs. ozone oxidation - were considered to investigate their contributions to particle nucleation and growth. Results from the latest CERN experiment from fall 2012 (CLOUD 7) are presented.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation
    (Copernicus, 26.05.2010) Spracklen, Dominick V.; Carslaw, Kenneth S.; Merikanto, Joonas; Mann, Graham W.; Reddington, Carly L.; Pickering, S.; Ogren, John A.; Andrews, Elisabeth; Baltensperger, Urs; Weingartner, Ernest; Boy, Michael; Kulmala, Markku; Laakso, Lauri; Lihavainen, Heikki; Kivekäs, Niku; Komppula, Mika; Mihalopoulos, Ninolaos; Kouvarakis, Giorgos; Jennings, Stephen G.; O'Dowd, Collin D.; Birmili, Wolfram; Wiedensohler, Alfred; Weller, Rolf; Gras, John; Laj, Paolo; Sellegri, Karine; Bonn, Boris; Krejci, Radovan; Laaksonen, Ari; Hamed, Amar; Minikin, Andreas; Harrison, Roy Michael; Talbot, Robert; Sun, Junying
    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT) and 1000–10 000 cm−3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental BL were also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events
    (Copernicus, 25.08.2010) Manninen, Hanna E.; Nieminen, Tuomo; Asmi, Eija; Gagné, Stéphanie; Häkkinen, Silja; Lehtipalo, Katrianne; Aalto, Pasi Pekka; Vana, Marko; Mirme, Aadu; Mirme, Sander; Hõrrak, Urmas; Plass-Dülmer, Christian; Stange, Gert; Kiss, Gyula; Hoffer, András; Törő, N.; Moerman, Marcel; Henzing, Bas; de Leeuw, Gerrit; Brinkenberg, Marcel; Kouvarakis, Giorgos N.; Bougiatioti, Aikaterini; Mihalopoulos, Nikolaos; O'Dowd, Colin D.; Ceburnis, Darius; Arneth, Almut; Svenningsson, Brigitta; Swietlicki, Erik; Tarozzi, Leone; Decesari, Stefano; Facchini, Maria Cristina; Birmili, Wolfram; Sonntag, André; Wiedensohler, Alfred; Boulon, Julien; Sellegri, Karine; Laj, Paolo; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Wehrle, Günther; Laaksonen, Ari; Hamed, Amar; Joutsensaari, Jorma; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku
    We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Widening the gap between measurement and modelling of secondary organic aerosol properties?
    (Copernicus, 2010) Good, Nicholas; Topping, D. O.; Duplissy, Jonathan; Gysel, Martin; Meyer, Nic K.; Metzger, Axel; Turner, S. F.; Baltensperger, Urs; Ristovski, Zoran; Weingartner, Ernest; Coe, Hugh; McFiggans, Gordan
    The link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the sub-saturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.)
    (Copernicus, 16.11.2010) Kammermann, Lukas; Gysel, Martin; Weingartner, Ernest; Baltensperger, Urs
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was operated at the high-alpine site Jungfraujoch in order to characterize the hygroscopic diameter growth factors of the free tropospheric Aitken and accumulation mode aerosol. More than ~5000 h of valid data were collected for the dry diameters D0 = 35, 50, 75, 110, 165, and 265 nm during the 13-month measurement period from 1 May 2008 through 31 May 2009. No distinct seasonal variability of the hygroscopic properties was observed. Annual mean hygroscopic diameter growth factors (D/D0) at 90% relative humidity were found to be 1.34, 1.43, and 1.46 for D0 = 50, 110, and 265 nm, respectively. This size dependence can largely be attributed to the Kelvin effect because corresponding values of the hygroscopicity parameter κ are nearly independent of size. The mean hygroscopicity of the Aitken and accumulation mode aerosol at the free tropospheric site Jungfraujoch was found to be κ≈0.24 with little variability throughout the year. The impact of Saharan dust events, a frequent phenomenon at the Jungfraujoch, on aerosol hygroscopicity was shown to be negligible for D0<265 nm. Thermally driven injections of planetary boundary layer (PBL) air, particularly observed in the early afternoon of summer days with convective anticyclonic weather conditions, lead to a decrease of aerosol hygroscopicity. However, the effect of PBL influence is not seen in the annual mean hygroscopicity data because the effect is small and those conditions (weather class, season and time of day) with PBL influence are relatively rare. Aerosol hygroscopicity was found to be virtually independent of synoptic wind direction during advective weather situations, i.e. when horizontal motion of the atmosphere dominates over thermally driven convection. This indicates that the hygroscopic behavior of the aerosol observed at the Jungfraujoch can be considered representative of the lower free troposphere on at least a regional if not continental scale.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Light scattering enhancement factors in the marine boundary layer (Mace Head, Ireland)
    (Wiley, 20.10.2010) Fierz‐Schmidhauser, Rahel; Zieger, Paul; Vaishya, Aditya; Monahan, Ciarán; Bialek, Jakub; O'Dowd, Collin D.; Jennings, Stephen G.; Baltensperger, Urs; Weingartner, Ernest
    Direct climate aerosol radiative forcing is influenced by the light scattering of atmospheric aerosols. The chemical composition, the size distribution, and the ambient relative humidity (RH) determine the amount of visible light scattered by aerosols. We measured the aerosol light scattering coefficients at RH varying from 30% to 90% of the marine atmosphere at the Mace Head Atmospheric Research Station on the west coast of Ireland. At this site, two major air mass types can be distinguished: clean marine and polluted air. In this paper, we present measurements of light scattering enhancement factors f(RH) = σsp(RH)/σsp(dry) from a 1 month field campaign (January–February 2009). At this site in winter, the mean f(RH = 85%) (standard deviation) for marine air masses at the wavelength of 550 nm was 2.22 (±0.17) and 1.77 (±0.31) for polluted air. Measured σsp(RH) and f(RH) agreed well with calculations from Mie theory using measurements of the size distribution and hygroscopic diameter growth factors as input. In addition, we investigated the RH influence on additional intensive optical properties: the backscatter fraction and the single scattering albedo. The backscatter fraction decreased by about 20%, and the single scattering albedo increased on average by 1%–5% at 85% RH compared to dry conditions.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Characterization and intercomparison of aerosol absorption photometers. result of two intercomparison workshops
    (Copernicus, 2011) Müller, Thomas; Henzing, Bas; de Leeuw, Gerrit; Wiedensohler, Alfred; Alastuey, Andrés; Angelov, H.; Bizjak, Milan; Collaud Coen, Martine; Engström, J. E.; Gruening, Carsten; Hillamo, Risto; Hoffer, András; Imre, Kornélia; Ivanow, Petko; Jennings, Stephen G.; Sun, Junying; Kalivitis, Nikos; Karlsson, Hanna; Komppula, Mikka; Laj, Paolo; Li, S.-M.; Lunder, Chris; Marinoni, Angela; Martins dos Santos, Sebastiao; Moerman, Marcel; Nowak, Andreas; Ogren, John A.; Petzold, Andreas; Pichon, Jean Marc; Rodriquez, Sergio; Sharma, Sangeeta; Sheridan, Patrick J.; Teinilä, Kimmo; Tuch, Thomas; Viana, Mar; Virkkula, Aki; Weingartner, Ernest; Wilhelm, R.; Wang, Yaqiang
    Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments
    (Copernicus, 06.12.2010) Chirico, Roberto; DeCarlo, Peter F.; Heringa, Maarten F.; Tritscher, Torsten; Richter, René; Prévôt, André S. H.; Dommen, Josef; Weingartner, Ernest; Wehrle, Günther; Gysel, Martin; Laborde, Marie; Baltensperger, Urs
    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23–0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.21 to 0.37.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010
    (Copernicus, 04.10.2011) Bukowiecki, Nicolas; Zieger, Paul; Weingartner, Ernest; Jurányi, Zsófia; Gysel, Martin; Neininger, Bruno; Schneider, Boris; Hueglin, Christoph; Ulrich, Andrea; Wichser, Adrian; Henne, Stephan; Brunner, Dominik; Kaegi, Ralf; Schwikowski, Margit; Tobler, Leonhard; Wienhold, Frank G.; Engel, Ilana; Buchmann, Brigitte; Peter, Thomas; Baltensperger, Urs
    The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17–19 April 2010 and 16–19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μgm−3 and 70 μgm−3 (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μgm−3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200–520) μgm−3 on 18 May 2010 over the northwestern Swiss plateau. The presented data significantly contributed to the time-critical assessment of the local ash layer properties during the initial eruption phase. Furthermore, dispersion models benefited from the detailed information on the volcanic aerosol size distribution and its chemical composition.
    01A - Beitrag in wissenschaftlicher Zeitschrift