Hochschule für Technik und Umwelt FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/35

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Publikation
    Contribution of railway traffic to local PM10 concentrations in Switzerland
    (Elsevier, 02/2007) Gehrig, Robert; Hill, Matz; Lienemann, Peter; Zwicky, Christoph N.; Bukowiecki, Nicolas; Weingartner, Ernest; Baltensperger, Urs; Buchmann, Brigitte
    Field measurement campaigns of PM10 and its elemental composition (daily sampling on filters) covering different seasons were performed at two sites near the busiest railway station of Switzerland in Zurich (at a distance of 10 m from the tracks) and at a site near a very busy railway line with more than 700 trains per day. At this latter site parallel samples were taken at 10, 36 and 120 m distances from the tracks with the aim to study the distance dependence of the railway induced PM10 concentrations. To distinguish the relatively small railway emissions from the regional background (typically 20–25 μg m−3), simultaneous samples were also taken at an urban background site in Zurich. The differences in PM10 and elemental concentrations between the railway exposed sites and the background site were allocated to the railway contribution. Small, however, measurable PM10 concentration differences were found at all sites. The elemental composition of these differences revealed iron as the only quantitatively important constituent. As a long-term average it amounted to approximately 1 μg m−3 Fe at a distance of 10 m from the tracks at all three sites. Assuming that iron was at least partly oxidised (e.g. in the form of Fe2O3) the contribution can amount up to 1.5 μg m−3. Emissions of copper, manganese and chromium from trains were also clearly identified. However, compared to iron these, elements were emitted in very low quantities. No significant contribution from rock material (calcium, aluminium, magnesium, sodium) was observed as might have been expected from erosion, abrasion and resuspension from the gravel below the tracks. Particle emissions from diesel exhaust were not considered as trains in Switzerland are operated nearly exclusively by electric locomotives. The railway, induced contribution to ambient PM10 decreased rapidly with increasing distance from the tracks. At a distance of 120 m this contribution dropped to only 25% of the contribution observed at 10 m distance.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    A review of more than 20 years of aerosol observation at the high altitude research station Jungfraujoch, Switzerland (3580 m asl)
    (Taiwan Association for Aerosol Research, 2016) Bukowiecki, Nicolas; Weingartner, Ernest; Gysel, Martin; Coen, Martine Collaud; Zieger, Paul; Herrmann, Erik; Steinbacher, Martin; Gäggeler, Heinz W.; Baltensperger, Urs
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    New particle formation in the free troposphere. A question of chemistry and timing
    (American Association for the Advancement of Science, 2016) Bianchi, Federico; Tröstl, Jasmin; Junninen, Heikki; Frege, Carla; Henne, Stephan; Hoyle, Christopher R.; Molteni, Ugo; Herrmann, Erik; Adamov, Alexey; Bukowiecki, Nicolas; Chen, Xuemeng; Duplissy, Jonathan; Gysel, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kontkanen, Jenni; Kürten, Andreas; Manninen, Hanna E.; Münch, Steffen; Peräkylä, Otso; Petäjä, Tuukka; Rondo, Linda; Williamson, Christina; Weingartner, Ernest; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku; Dommen, Josef; Baltensperger, Urs
    From neutral to new Many of the particles in the troposphere are formed in situ, but what fraction of all tropospheric particles do they constitute and how exactly are they made? Bianchi et al report results from a high-altitude research station. Roughly half of the particles were newly formed by the condensation of highly oxygenated multifunctional compounds. A combination of laboratory results, field measurements, and model calculations revealed that neutral nucleation is more than 10 times faster than ion-induced nucleation, that particle growth rates are size-dependent, and that new particle formation occurs during a limited time window.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Chemical and physical influences on aerosol activation in liquid clouds. A study based on observations from the Jungfraujoch, Switzerland
    (Copernicus, 2016) Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; Baltensperger, Urs
    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.
    01A - Beitrag in wissenschaftlicher Zeitschrift