Bayer-Oglesby, Lucy

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Bayer-Oglesby
Vorname
Lucy
Name
Bayer-Oglesby, Lucy

Suchergebnisse

Gerade angezeigt 1 - 1 von 1
  • Publikation
    Validity of Ambient Levels of Fine Particles as Surrogate for Personal Exposure to Outdoor Air Pollution—Results of the European EXPOLIS-EAS Study (Swiss Center Basel)
    (Taylor & Francis, 27.12.2011) Bayer-Oglesby, Lucy; Künzli, Nino; Röösli, Martin; Braun-Fahrländer, Charlotte; Mathys, Patrick; Stern, Willem; Jantunen, Matti; Kousa, Anu [in: Journal of the Air & Waste Management Association]
    To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.
    01A - Beitrag in wissenschaftlicher Zeitschrift