Hauser, Sarah

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Hauser
Vorname
Sarah
Name
Hauser, Sarah

Suchergebnisse

Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Publikation

Computational Music Thinking - Using End-User Programming to Explore Musical Creation in a STEAM-oriented Integrated Music Education Setting

2016-07, Hug, Daniel, Stüber, Nadine, Repenning, Alexander, Cslovjecsek, Markus, Hauser, Sarah, Agotai, Doris, Miyazaki, Shintaro, Escherle, Nora, Assaf, Dorit, Woodward, Sheila

Computers have not only changed the way we live and work, but also how we create and consume music. Music software and apps are nowadays widespread in music education (Bauer, 2014). But the potential of the computer as actual musical „computing device“ is rarely exploited. In the area of computer science education the need to approach programming as creative and playful activity has been acknowledged since several years (Repenning et al., 2015). „Computational thinking“, as approach to problem solving that can be executed by both humans and computers (Wing, 2006), is being fostered in schools in the context of STEM (Science, Technology, Engineering, Math) education. And it is increasingly acknowledged that the notion of STEM should be extended to „STEAM“, the "A" standing for "the Arts", in order to foster transdisciplinary, holistic and innovative thinking. The use of algorithms and computing machinery has a long tradition in music, from the “musical dice games” to musical automatons and the computer music of the 20th century. Learning procedural and time-based concepts such as rhythm, melody and polyphony involves some kind of computational music thinking. Algorithmic composition offers children many opportunities to develop their own understanding of "musicality" from an inside perspective, by defining their own rules for generating "organized sound", and by understanding the "rules" and structures underlying various musical phenomena, practices and cultures. Recent works have demonstrated approaches to implement computational principles in classroom or workshop settings (Greher & Heines, 2014; Burnard et al., 2014). Therefore, we see great pedagogical potential in the integration of musical and computational thinking to “Computational Music Thinking”, which we would like to share and discuss with the community.