Weingartner, Ernest

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Weingartner
Vorname
Ernest
Name
Weingartner, Ernest

Suchergebnisse

Gerade angezeigt 1 - 10 von 89
  • Publikation
    Ambient and laboratory observations of organic ammonium salts in PM₁
    (Royal Society of Chemistry, 2017) Schlag, Patrick; Rubach, Florian; Mentel, Thomas F.; Reimer, David Thomas; Canonaco, Francesco; Henzing, Bas; Moerman, M.; Otjes, R.; Prévôt, André S.H.; Rohrer, Franz; Rosati, B.; Tillmann, Ralf; Weingartner, Ernest; Kiendler-Scharr, Astrid [in: Faraday Discussions]
    Ambient measurements of PM1aerosol chemical composition at Cabauw, the Netherlands, implicate higher ammonium concentrations than explained by the formation of inorganic ammonium salts. This additional particulate ammonium is called excess ammonium (eNH4). Height profiles over the Cabauw Experimental Site for Atmospheric Research (CESAR) tower, of combined ground based and airborne aerosol mass spectrometric (AMS) measurements on a Zeppelin airship show higher concentrations ofeNH4at higher altitudes compared to the ground. Through flights across the Netherlands, the Zeppelin based measurements furthermore substantiateeNH4as a regional phenomenon in the planetary boundary layer. The excess ammonium correlates with mass spectral signatures of (di-)carboxylic acids, making a heterogeneous acid–base reaction the likely process of NH3uptake. We show that this excess ammonium was neutralized by the organic fraction forming particulate organic ammonium salts. We discuss the significance of such organic ammonium salts for atmospheric aerosols and suggest that NH3emission control will have benefits for particulate matter control beyond the reduction of inorganic ammonium salts.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Development of an airborne sensor for reliable detection of volcanic ash
    (IEEE, 2016) Weingartner, Ernest; Jurányi, Zsofia; Egli, Daniel; Steigmeier, Peter; Burtscher, Heinz [in: 3rd IEEE International Workshop on Metrology for Aerospace. Proceedings]
    This sensor detects volcanic ash particles and distinguishes them from cloud droplets. Operated on an airplane, this detector can quantify the exposure to hazardous refractory ash and the in-situ measurement is not biased by the presence of cloud particles. A volcanic eruption emits a significant amount of hazardous ash particles into the air. If the event is strong enough, the volcanic ash plume can reach high altitudes and can be a serious security risk for airplanes. We have developed a new prototype aerosol sensor for the reliable detection of volcanic ash. The envisaged application is the employment of this new technique on board of passenger aircraft. It allows in-situ monitoring of the airplane's exposure to volcanic ash. The challenge of this development is the requirement that the sensor can distinguish cloud droplets (or ice crystals) from the hazardous refractory ash particles. At aviation altitudes, water droplets and ice crystals are often present in the particle size region of the ash (1-20 micrometer) and their concentrations can reach the levels that are considered as the limits of the different volcanic ash contamination zones. Therefore, it is crucial that the sensor can differentiate between volcanic ash and water or ice particles. The sensor measures the scattered light intensities from individual particles outside of the airplane cabin through a glass window. The desired discrimination is achieved with two lasers operating at different wavelengths. Ash concentrations (in terms of number and mass) are derived, and the exposure of the airplane is recorded and transmitted in real time to the pilot. The volcanic ash detector was tested in the laboratory with various test aerosols and micrometer-sized water droplets. Then, ground-based outdoor measurements were conducted and the instrument response to mineral dust (a surrogate for volcanic ash) and natural cloud droplets (and ice crystals) was investigated. In a next step, this new technique will be tested in summer 2016 on-board of a research aircraft.
    04B - Beitrag Konferenzschrift
  • Publikation
    New particle formation in the free troposphere. A question of chemistry and timing
    (American Association for the Advancement of Science, 2016) Bianchi, Federico; Tröstl, Jasmin; Junninen, Heikki; Frege, Carla; Henne, Stephan; Hoyle, Christopher R.; Molteni, Ugo; Herrmann, Erik; Adamov, Alexey; Bukowiecki, Nicolas; Chen, Xuemeng; Duplissy, Jonathan; Gysel, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kontkanen, Jenni; Kürten, Andreas; Manninen, Hanna E.; Münch, Steffen; Peräkylä, Otso; Petäjä, Tuukka; Rondo, Linda; Williamson, Christina; Weingartner, Ernest; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku; Dommen, Josef; Baltensperger, Urs [in: Science]
    From neutral to new Many of the particles in the troposphere are formed in situ, but what fraction of all tropospheric particles do they constitute and how exactly are they made? Bianchi et al report results from a high-altitude research station. Roughly half of the particles were newly formed by the condensation of highly oxygenated multifunctional compounds. A combination of laboratory results, field measurements, and model calculations revealed that neutral nucleation is more than 10 times faster than ion-induced nucleation, that particle growth rates are size-dependent, and that new particle formation occurs during a limited time window.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
    (National Academy of Sciences, 2016) Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S. [in: Proceedings of the National Academy of Sciences]
    A mechanism for the formation of atmospheric aerosols via the gas to particle conversion of highly oxidized organic molecules is found to be the dominant aerosol formation process in the preindustrial boundary layer over land. The inclusion of this process in a global aerosol model raises baseline preindustrial aerosol concentrations and could lead to a reduction of 27% in estimates of anthropogenic aerosol radiative forcing.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Analysis of long‐term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport
    (Wiley, 2015) Herrmann, Erik; Weingartner, Ernest; Henne, Stephan; Vuilleumier, Laurent; Bukowiecki, Nicolas; Steinbacher, Martin; Conen, Franz; Collaud Coen, Martine; Hammer, Emanuel; Jurányi, Zsófia; Baltensperger, Urs; Gysel, Martin [in: Journal of Geophysical Research: Atmospheres]
    Six years of aerosol size distribution measurements between 20 and 600 nm diameters and total aerosol concentration above 10 nm from March 2008 to February 2014 at the high‐alpine site Jungfraujoch are presented. The size distribution was found to be typically bimodal with mode diameters and widths relatively stable throughout the year and the observation period. New particle formation was observed on 14.5% of all days without a seasonal preference. Particles typically grew only into the Aitken mode and did not reach cloud condensation nucleus (CCN) sizes on the time scale of several days. Growth of preexisting particles in the Aitken mode, on average, contributed very few CCN. We concluded that the dominant fraction of CCN at Jungfraujoch originated in the boundary layer. A number of approaches were used to distinguish free tropospheric (FT) conditions and episodes with planetary boundary layer (PBL) influence. In the absence of PBL injections, the concentration of particles larger than 90 nm (N90, roughly corresponding to the CCN concentration) reached a value ~40 cm−3 while PBL influence caused N90 concentrations of several hundred or even 1000 cm−3. Comparing three criteria for free tropospheric conditions, we found FT prevalence for 39% of the time with over 60% during winter and below 20% during summer. It is noteworthy that a simple criterion based on standard trace gas measurements appeared to outperform alternative approaches.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles
    (American Association for the Advancement of Science, 2014) Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E.; Dommen, Josef; Ortega, Ismael K.; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N.; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P.; Santos, Filipe D.; Schallhart, Simon; Seinfeld, John H.; Sipilä, Mikko; Spracklen, Dominick V.; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E.; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S.; Curtius, Joachim; Donahue, Neil M.; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R.; Baltensperger, Urs [in: Science]
    Out of the Air New-particle formation from gaseous precursors in the atmosphere is a complex and poorly understood process with importance in atmospheric chemistry and climate. Laboratory studies have had trouble reproducing the particle formation rates that must occur in the natural world. Riccobono et al. used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to recreate a realistic atmospheric environment. Sulfuric acid and oxidized organic vapors in typical natural concentrations caused particle nucleation at similar rates to those observed in the lower atmosphere.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Predicting hygroscopic growth using single particle chemical composition estimates
    (Wiley, 2014) Healy, Robert M.; Evans, Greg J.; Murphy, Michael; Jurányi, Zsófia; Tritscher, Torsten; Laborde, Marie; Weingartner, Ernest; Gysel, Martin; Poulain, Laurent; Kamilli, Katharina A.; Wiedensohler, Alfred; O'Connor, Ian P.; McGillicuddy, Eoin; Sodeau, John R.; Wenger, John C. [in: Journal of Geophysical Research: Atmospheres]
    Single particle mass spectral data, collected in Paris, France, have been used to predict hygroscopic growth at the single particle level. The mass fractions of black carbon, organic aerosol, ammonium, nitrate, and sulphate present in each particle were estimated using a combination of single particle mass spectrometer and bulk aerosol chemical composition measurements. The Zdanovskii‐Stokes‐Robinson (ZSR) approach was then applied to predict hygroscopic growth factors based on these mass fraction estimates. Smaller particles with high black carbon mass fractions and low inorganic ion mass fractions exhibited the lowest predicted growth factors, while larger particles with high inorganic ion mass fractions exhibited the highest growth factors. Growth factors were calculated for subsaturated relative humidity (90%) to enable comparison with hygroscopic tandem differential mobility analyzer measurements. Mean predicted and measured hygroscopic growth factors for 110, 165, and 265 nm particles were found to agree within 6%. Single particle‐based ZSR hygroscopicity estimates offer an advantage over bulk aerosol composition‐based hygroscopicity estimates by providing additional chemical mixing state information. External mixing can be determined for particles of a given diameter through examination of the predicted hygroscopic growth factor distributions. Using this approach, 110 nm and 265 nm particles were found to be predominantly internally mixed; however, external mixing of 165 nm particles was observed periodically when thinly coated and thickly coated black carbon particles were simultaneously detected. Single particle‐resolved chemical information will be useful for modeling efforts aimed at constraining cloud condensation nuclei activity and hygroscopic growth.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics
    (AIP Publishing, 24.06.2013) Keskinen, Helmi; Virtanen, Annele; Joutsensaari, Jorma; Tsagkogeorgas, Georgios; Duplissy, Jonathan; Schobesberger, Siegfried; Gysel, Martin; Riccobono, Francesco; Slowik, Jay Gates; Bianchi, Federico; Yli-Juuti, Taina; Lehtipalo, Katrianne; Rondo, Linda; Breitenlechner, Martin; Kupc, Agnieszka; Almeida, João; Amorim, Antonio; Dunne, Eimear M.; Downard, Andrew J.; Ehrhart, Sebastian; Franchin, Alessandro; Kajos, Maija K.; Kirkby, Jasper; Kürten, Andreas; Nieminen, Tuomo; Makhmutov, Vladimir; Mathot, Serge; Miettinen, Pasi; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Santos, Filipe D.; Schallhart, Simon; Sipilä, Mikko; Stozhkov, Yuri; Tomé, Antonio; Vaattovaara, Petri; Wimmer, Daniela; Prévôt, André S.H.; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Viisanen, Yrjö; Weingartner, Ernest; Riipinen, Ilona; Hansel, Armin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R.; Baltensperger, Urs; Wex, Heike; Stratmann, Frank; Laaksonen, Ari; DeMott, Paul J.; O'Dowd, Colin D. [in: Nucleation and atmospheric aerosols]
    04B - Beitrag Konferenzschrift
  • Publikation
    Particle nucleation events at the high Alpine station Jungfraujoch
    (AIP Publishing, 24.05.2013) Bianchi, Federico; Junninen, Heikki; Tröstl, Jasmin; Duplissy, Jonathan; Rondo, Linda; Simon, Mario; Kürten, Andreas; Adamov, Alexey; Curtius, Joachim; Dommen, Josef; Weingartner, Ernest; Worsnop, Douglas R.; Kulmala, Markku; Baltensperger, Urs; DeMott, Paul J.; O'Dowd Colin D. [in: Nucleation and atmospheric aerosols]
    04B - Beitrag Konferenzschrift
  • Publikation
    Hygroscopic properties of fresh and aged wood burning particles
    (Elsevier, 2013) Martin, Maria; Tritscher, Torsten; Jurányi, Zsófia; Heringa, Maarten F.; Sierau, Berko; Weingartner, Ernest; Chirico, Roberto; Gysel, Martin; Prévôt, André S.H.; Baltensperger, Urs; Lohmann, Ulrike [in: Journal of Aerosol Science]
    01A - Beitrag in wissenschaftlicher Zeitschrift