Weingartner, Ernest

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Weingartner
Vorname
Ernest
Name
Weingartner, Ernest

Suchergebnisse

Gerade angezeigt 1 - 10 von 16
  • Publikation
    A European aerosol phenomenology - 6. Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites
    (Copernicus, 2018) Pandolfi, Marco; Alados-Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Angelov, Christo; Artiñano, Begoña; Backman, John; Baltensperger, Urs; Bonasoni, Paolo; Bukowiecki, Nicolas; Collaud Coen, Martine; Conil, Sébastien; Coz, Esther; Crenn, Vincent; Dudoitis, Vadimas; Ealo, Marina; Eleftheriadis, Kostas; Favez, Olivier; Fetfatzis, Prodromos; Fiebig, Markus; Flentje, Harald; Ginot, Patrick; Gysel, Martin; Henzing, Bas; Hoffer, Andras; Holubova Smejkalova, Adela; Kalapov, Ivo; Kalivitis, Nikos; Kouvarakis, Giorgos; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lunder, Chris; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mihalopoulos, Nikolaos; Moerman, Marcel; Nicolas, José; O'Dowd, Colin D.; Petäjä, Tuukka; Petit, Jean-Eudes; Pichon, Jean Marc; Prokopciuk, Nina; Putaud, Jean-Philippe; Rodríguez, Sergio; Sciare, Jean; Sellegri, Karine; Swietlicki, Erik; Titos, Gloria; Tuch, Thomas; Tunved, Peter; Ulevicius, Vidmantas; Vaishya, Aditya; Vana, Milan; Virkkula, Aki; Vratolis, Stergios; Weingartner, Ernest; Wiedensohler, Alfred; Laj, Paolo [in: Atmospheric Chemistry and Physics]
    This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intra-annual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Ambient and laboratory observations of organic ammonium salts in PM₁
    (Royal Society of Chemistry, 2017) Schlag, Patrick; Rubach, Florian; Mentel, Thomas F.; Reimer, David Thomas; Canonaco, Francesco; Henzing, Bas; Moerman, M.; Otjes, R.; Prévôt, André S.H.; Rohrer, Franz; Rosati, B.; Tillmann, Ralf; Weingartner, Ernest; Kiendler-Scharr, Astrid [in: Faraday Discussions]
    Ambient measurements of PM1aerosol chemical composition at Cabauw, the Netherlands, implicate higher ammonium concentrations than explained by the formation of inorganic ammonium salts. This additional particulate ammonium is called excess ammonium (eNH4). Height profiles over the Cabauw Experimental Site for Atmospheric Research (CESAR) tower, of combined ground based and airborne aerosol mass spectrometric (AMS) measurements on a Zeppelin airship show higher concentrations ofeNH4at higher altitudes compared to the ground. Through flights across the Netherlands, the Zeppelin based measurements furthermore substantiateeNH4as a regional phenomenon in the planetary boundary layer. The excess ammonium correlates with mass spectral signatures of (di-)carboxylic acids, making a heterogeneous acid–base reaction the likely process of NH3uptake. We show that this excess ammonium was neutralized by the organic fraction forming particulate organic ammonium salts. We discuss the significance of such organic ammonium salts for atmospheric aerosols and suggest that NH3emission control will have benefits for particulate matter control beyond the reduction of inorganic ammonium salts.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns
    (Copernicus, 2016) Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Henzing, Bas; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]
    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at  ∼  100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to  ∼  700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34  ±  0.12 and 0.19  ±  0.07 for 500 nm particles, at  ∼  100 and  ∼  700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18  ±  0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from direct measurements was 0.28 ±  0.10, thus considerably higher than κ values measured in Italy in the fully mixed PBL.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
    (National Academy of Sciences, 2016) Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S. [in: Proceedings of the National Academy of Sciences]
    A mechanism for the formation of atmospheric aerosols via the gas to particle conversion of highly oxidized organic molecules is found to be the dominant aerosol formation process in the preindustrial boundary layer over land. The inclusion of this process in a global aerosol model raises baseline preindustrial aerosol concentrations and could lead to a reduction of 27% in estimates of anthropogenic aerosol radiative forcing.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar
    (Copernicus, 2016) Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]
    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ∼  50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ∼  10:00 LT – local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ∼  12:00 LT) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. Lidar estimates captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in situ results, using fixed lidar ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are consistent with values for continental aerosol particles that can be expected in this region.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets
    (Copernicus, 2015) Jurányi, Zsófia; Burtscher, Heinz; Loepfe, Markus; Nenkov, Maxim; Weingartner, Ernest [in: Atmospheric Measurement Techniques]
    A new method is presented in this paper which analyses the scattered light of individual aerosol particles simultaneously at two different wavelengths in order to retrieve information on the particle type. We show that dust-like particles, such as volcanic ash, can be unambiguously discriminated from water droplets on a single-particle level. As a future application of this method, the detection of volcanic ash particles should be possible in a humid atmosphere in the presence of cloud droplets. The characteristic behaviour of pure water's refractive index can be used to separate water droplets and dust-like particles which are commonly found in the micrometre size range in the ambient air. The low real part of the water's refractive index around 2700–2800 nm results in low scattered light intensities compared to e.g. the visible wavelength range, and this feature can be used for the desired particle identification. The two-wavelength measurement set-up was theoretically and experimentally tested and studied. Theoretical calculations were done using Mie theory. Comparing the ratio of the scattered light at the two wavelengths (visible-to-IR (infrared), R value) for water droplets and different dust types (basalt, andesite, African mineral dust, sand, volcanic ash, pumice) showed at least 9-times-higher values (on average 70 times) for water droplets than for the dust types at any diameter within the particle size range of 2–20 μm. The envisaged measurement set-up was built up into a laboratory prototype and was tested with different types of aerosols. We generated aerosols from the following powders, simulating dust-like particles: cement dust, ISO 12103-1 A1 Ultrafine Test Dust and ash from the 2012 eruption of the Etna volcano. Our measurements verified the theoretical considerations; the median experimental R value is 8–21 times higher for water than for the "dust" particles.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Analysis of long‐term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport
    (Wiley, 2015) Herrmann, Erik; Weingartner, Ernest; Henne, Stephan; Vuilleumier, Laurent; Bukowiecki, Nicolas; Steinbacher, Martin; Conen, Franz; Collaud Coen, Martine; Hammer, Emanuel; Jurányi, Zsófia; Baltensperger, Urs; Gysel, Martin [in: Journal of Geophysical Research: Atmospheres]
    Six years of aerosol size distribution measurements between 20 and 600 nm diameters and total aerosol concentration above 10 nm from March 2008 to February 2014 at the high‐alpine site Jungfraujoch are presented. The size distribution was found to be typically bimodal with mode diameters and widths relatively stable throughout the year and the observation period. New particle formation was observed on 14.5% of all days without a seasonal preference. Particles typically grew only into the Aitken mode and did not reach cloud condensation nucleus (CCN) sizes on the time scale of several days. Growth of preexisting particles in the Aitken mode, on average, contributed very few CCN. We concluded that the dominant fraction of CCN at Jungfraujoch originated in the boundary layer. A number of approaches were used to distinguish free tropospheric (FT) conditions and episodes with planetary boundary layer (PBL) influence. In the absence of PBL injections, the concentration of particles larger than 90 nm (N90, roughly corresponding to the CCN concentration) reached a value ~40 cm−3 while PBL influence caused N90 concentrations of several hundred or even 1000 cm−3. Comparing three criteria for free tropospheric conditions, we found FT prevalence for 39% of the time with over 60% during winter and below 20% during summer. It is noteworthy that a simple criterion based on standard trace gas measurements appeared to outperform alternative approaches.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques
    (Copernicus, 2015) Worringen, Annette; Kandler, Konrad; Benker, Nathlie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, D.; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, S.; Weinbruch, Stephan; Ebert, Martin [in: Atmospheric Chemistry and Physics]
    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20–70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200–400 nm in geometric diameter. In a few cases, a second supermicron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the sub-micrometer range. Silicates and Ca-rich particles were mainly found with diameters above 1 μm (using ISI and FINCH), in contrast to the Ice-CVI which also sampled many submicron particles of both groups. Due to changing meteorological conditions, the INP/IPR composition was highly variable if different samples were compared. Thus, the observed discrepancies between the different separation techniques may partly result from the non-parallel sampling. The differences of the particle group relative number abundance as well as the mixing state of INP/IPR clearly demonstrate the need of further studies to better understand the influence of the separation techniques on the INP/IPR chemical composition. Also, it must be concluded that the abundance of contamination artifacts in the separated INP and IPR is generally large and should be corrected for, emphasizing the need for the accompanying chemical measurements. Thus, further work is needed to allow for routine operation of the three separation techniques investigated.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
    (Copernicus, 2015) Paramonov, Mikhail; Kerminen, Veli-Matti; Gysel, Martin; Aalto, Pasi Pekka; Andreae, Meinrat O.; Asmi, Eija; Baltensperger, Urs; Bougiatioti, Aikaterini; Brus, David; Frank, Göran; Good, Nicholas; Gunthe, Sachin S.; Hao, Liqing; Irwin, Martin; Jaatinen, Antti; Jurányi, Zsófia; King, S. M.; Kortelainen, Aki; Kristensson, Adam; Lihavainen, Heikki; Kulmala, Markku; Lohmann, Ulrike; Martin, Scot T.; McFiggans, Gordon; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin D.; Ovadnevaite, Jurgita; Petäjä, Tuukka; Pöschl, Ulrich; Roberts, Greg; Rose, Diana; Svenningsson, Birgitta; Swietlicki, Erik; Weingartner, Ernest; Whitehead, James; Wiedensohler, Alfred; Wittbom, Cerina; Sierau, Berko [in: Atmospheric Chemistry and Physics]
    Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (NCCN) to the total number concentration of particles (NCN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations – exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A50 and A100, respectively) renders a much more stable dependence of A on S; A50 and A100 also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter κ decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations κ increased with size. In fact, in Hyytiälä, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5 % significance level. In a boreal environment the assumption of a size-independent κ can lead to a potentially substantial overestimation of NCCN at S levels above 0.6 %. The same is true for other locations where κ was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of NCCN, total aerosol number concentration and aerosol size distribution remain more important parameters. The seasonal and diurnal patterns of CCN activation and hygroscopic properties vary among three long-term locations, highlighting the spatial and temporal variability of potential aerosol–cloud interactions in various environments.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    The ice selective inlet. a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds
    (Copernicus, 2015) Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schnaiter, Martin; Bigi, Alessandro; Gysel, Martin; Rosati, Bernadette; Toprak, Emre; Mertes, Stephan; Baltensperger, Urs [in: Atmospheric Measurement Techniques]
    Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol–cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE) 2013 and 2014 – two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important opportunity for a proof of concept of the inlet design. In this work we present the setup of the ISI, including the modelling and laboratory characterization of its components, as well as field measurements demonstrating the ISI performance and validating the working principle of the inlet. Finally, measurements of biological aerosol during a Saharan dust event (SDE) are presented, showing a first indication of enrichment of bio-material in sub-2 μm ice residuals.
    01A - Beitrag in wissenschaftlicher Zeitschrift