Pascal, Joris

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Pascal
Vorname
Joris
Name
Pascal, Joris

Suchergebnisse

Gerade angezeigt 1 - 6 von 6
  • Publikation
    Low-field electromagnetic tracking using 3-D magnetometer for assisted surgery
    (IEEE, 02/2023) Vergne, Céline; Féry, Corentin; Quirin, Thomas; Nicolas, Hugo; Madec, Morgan; Hemm-Ode, Simone; Pascal, Joris [in: IEEE Transactions on Magnetics]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Experimental assessment of the performances of an anisotropic magnetoresistive sensor after exposure to strong magnetic fields
    (IEEE, 2023) Vergne, Céline; Nicolas, Hugo; Madec, Morgan; Hemm-Ode, Simone; Guzman, Raphael; Pascal, Joris [in: 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers)]
    On-chip magnetometers are already integrated within long-term implants such as cardiac implantable electronic devices. They are also good candidates to be integrated within the next generations of brain stimulation electrodes to provide their position and orientation. In all cases, long-term implants are expected to be at least certified as MRI conditional. We investigated the resilience to the exposure to 3 T and 7 T of an anisotropic magnetoresistive sensor integrating a set/reset function. The sensitivity, non-linearity, and offset of a batch of 63 identical sensors were not affected by the exposure. These preliminary results provide new insights on the usability of magnetoresistive sensors for biomedical applications requiring MRI conditionality.
    04B - Beitrag Konferenzschrift
  • Publikation
    Towards a new generation of electromagnetic navigation system for deep brain stimulation
    (European Society for Stereotactic and Functional Neurosurgery, 2023) Vergne, Céline; Morgan, Madec; Guzmann, Raphael; Pascal, Joris; Hemm-Ode, Simone
    06 - Präsentation
  • Publikation
    Towards tracking of deep brain stimulation electrodes using an integrated magnetometer
    (MDPI, 10.04.2021) Quirin, Thomas; Féry, Corentin; Vogel, Dorian; Vergne, Céline; Sarracanie, Mathieu; Salameh, Najat; Madec, Morgan; Hemm-Ode, Simone; Hebrard, Luc; Pascal, Joris [in: Sensors]
    This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Towards tracking of deep brain stimulation electrodes using an integrated magnetometer
    (MDPI, 04/2021) Quirin, Thomas; Féry, Corentin; Vogel, Dorian; Vergne, Céline; Sarracanie, Mathieu; Salameh, Najat; Madec, Morgan; Hemm-Ode, Simone; Hébrard, Luc; Pascal, Joris [in: Sensors]
    This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Tracking the orientation of deep brain stimulation electrodes using an embedded magnetic sensor
    (2021) Vergne, Céline; Madec, Morgan; Hemm-Ode, Simone; Quirin, Thomas; Vogel, Dorian; Hebrard, Luc; Pascal, Joris [in: 10th International IEEE EMBS Conference on Neural Engineering]
    This paper proposes a three-dimensional (3D) orientation tracking method of a 3D magnetic sensor embedded in a 2.5 mm diameter electrode. Our system aims to be used during intraoperative surgery to detect the orientation of directional leads (D-leads) for deep brain stimulation (DBS).
    06 - Präsentation