Koch, Manuel

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Koch
Vorname
Manuel
Name
Koch, Manuel

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Publikation
    CoolShift – Cooling of buildings by chiller-assisted nocturnal radiation and convection
    (IOP Publishing, 04.09.2019) Koch, Manuel; Dott, Ralf; Eismann, Ralph; Scartezzini, Jean-Louis [in: CISBAT]
    A novel approach for cooling an office building is numerically evaluated. PVT collectors are used for nocturnal radiative and convective cooling. A TABS ceiling serves as thermal storage. If the free cooling power of the PVT collectors is too low, it is boosted by a chiller raising the collector temperature. While the energy efficiency improves compared to a conventional daytime chiller cooling system, the room temperature cannot always be kept in the desired band. Furthermore, the PVT collectors stay cooler than comparable PV modules during the day, increasing the electricity generation.
    04 - Beitrag Sammelband oder Konferenzschrift
  • Publikation
    CoolShift. Cooling of buildings by chiller-assisted nocturnal radiation and convection
    (IOP Publishing, 2019) Koch, Manuel; Dott, Ralf; Eismann, Ralph [in: Journal of Physics: Conference Series]
    A novel approach for cooling an office building is numerically evaluated. PVT collectors are used for nocturnal radiative and convective cooling. A TABS ceiling serves as thermal storage. If the free cooling power of the PVT collectors is too low, it is boosted by a chiller raising the collector temperature. While the energy efficiency improves compared to a conventional daytime chiller cooling system, the room temperature cannot always be kept in the desired band. Furthermore, the PVT collectors stay cooler than comparable PV modules during the day, increasing the electricity generation.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Contributions to system integration of PV and PVT collectors with heat pumps in buildings
    (2019) Koch, Manuel; Dott, Ralf; Tanabe, Shin-ichi; Zhang, H.; Kurnitski, Jarek; Gameiro da Silva, Manuel; Nastase, Ilinca; Wargocki, Pawel; Cao, Guangyu; Mazzarela, Livio; Inard, Christian [in: E3S Web of Conferences]
    A common approach to improve self-consumption of photovoltaic (PV) generation in buildings with heat pumps (HP) is to overload the thermal storage capacities during times with surplus PV generation (hereinafter referred to as thermal overloading). The impact of battery capacity and domestic hot water (DHW) consumption on the effectiveness of this method in a single-family home (SFH) is evaluated through numerical simulations. Increased battery capacity is shown to decrease the effectiveness of thermal overloading. Regarding DHW consumption, temporal concentration is shown to have a stronger influence on the effectiveness of thermal overloading than total energy. Furthermore, the potential of photovoltaic-thermal collectors (PVT) as heat exchangers for air/brine/water heat pumps (ABWHP) is estimated. The results show that the properties of PVT collectors with high thermal conductivity are in the feasible range for application in a well-insulated SFH in Central European climate.
    04B - Beitrag Konferenzschrift