Koch, Manuel
Email Address
Birth Date
Search results
Model predictive control for energy-efficient optimization of radiant ceiling cooling systems
2021-11, Koch, Manuel, Qiong Chen, Nan Li
State-of-the-art model predictive control (MPC) applications have been performed in various heating and cooling systems of buildings, such as fan coil unit systems and radiant floor heating systems. However, there is also a significant potential for improved zone air temperature control for better thermal comfort and efficient energy savings in increasingly prosperous radiant ceiling cooling systems. In this research, the physics-based model was developed by applying the building envelope configuration and material property information. The reduced order model of the original radiant ceiling cooling system model was then simplified using the balanced trun cation method for reducing computational cost and maintaining a comparative model accuracy. The model predictive control of radiant ceiling cooling systems was proposed for zone air temperature tracking, allowing the system to be more robust and adaptive to external thermal disturbances such as solar radiation and ambient temperature. The superior performance of model predictive control in terms of accurate zone air temperature tracking and energy efficiency was evaluated by a simulation compared to PID control and conventional bang bang control in both continuous and intermittent operation. The proposed model predictive control can achieve 21%–27% and 6% energy saving efficiency, compared with PID control and conventional bang-bang control, respectively. And there is rarely any overshoot or steady-state error presence for the zone air temperature, which demonstrated the significant potential of the robust model redictive control for better thermal comfort and efficient energy savings in growing prosperous radiant ceiling cooling systems.
Contributions to system integration of PV and PVT collectors with heat pumps in buildings
2019, Koch, Manuel, Dott, Ralf, Tanabe, Shin-ichi, Zhang, H., Kurnitski, Jarek, Gameiro da Silva, Manuel, Nastase, Ilinca, Wargocki, Pawel, Cao, Guangyu, Mazzarela, Livio, Inard, Christian
A common approach to improve self-consumption of photovoltaic (PV) generation in buildings with heat pumps (HP) is to overload the thermal storage capacities during times with surplus PV generation (hereinafter referred to as thermal overloading). The impact of battery capacity and domestic hot water (DHW) consumption on the effectiveness of this method in a single-family home (SFH) is evaluated through numerical simulations. Increased battery capacity is shown to decrease the effectiveness of thermal overloading. Regarding DHW consumption, temporal concentration is shown to have a stronger influence on the effectiveness of thermal overloading than total energy. Furthermore, the potential of photovoltaic-thermal collectors (PVT) as heat exchangers for air/brine/water heat pumps (ABWHP) is estimated. The results show that the properties of PVT collectors with high thermal conductivity are in the feasible range for application in a well-insulated SFH in Central European climate.
CoolShift – Cooling of buildings by chiller-assisted nocturnal radiation and convection
2019-09-04, Koch, Manuel, Dott, Ralf, Eismann, Ralph, Scartezzini, Jean-Louis
A novel approach for cooling an office building is numerically evaluated. PVT collectors are used for nocturnal radiative and convective cooling. A TABS ceiling serves as thermal storage. If the free cooling power of the PVT collectors is too low, it is boosted by a chiller raising the collector temperature. While the energy efficiency improves compared to a conventional daytime chiller cooling system, the room temperature cannot always be kept in the desired band. Furthermore, the PVT collectors stay cooler than comparable PV modules during the day, increasing the electricity generation.
CoolShift. Cooling of buildings by chiller-assisted nocturnal radiation and convection
2019, Koch, Manuel, Dott, Ralf, Eismann, Ralph
A novel approach for cooling an office building is numerically evaluated. PVT collectors are used for nocturnal radiative and convective cooling. A TABS ceiling serves as thermal storage. If the free cooling power of the PVT collectors is too low, it is boosted by a chiller raising the collector temperature. While the energy efficiency improves compared to a conventional daytime chiller cooling system, the room temperature cannot always be kept in the desired band. Furthermore, the PVT collectors stay cooler than comparable PV modules during the day, increasing the electricity generation.