Brodbeck, Dominique
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse
Solving the explainable AI conundrum by bridging clinicians’ needs and developers’ goals
2023-05-22, Bienefeld, Nadine, Boss, Jens Michael, Lüthy, Rahel, Brodbeck, Dominique, Azzati, Jan, Blaser, Mirco, Willms, Jan, Keller, Emanuela
Explainable artificial intelligence (XAI) has emerged as a promising solution for addressing the implementation challenges of AI/ML in healthcare. However, little is known about how developers and clinicians interpret XAI and what conflicting goals and requirements they may have. This paper presents the findings of a longitudinal multi-method study involving 112 developers and clinicians co-designing an XAI solution for a clinical decision support system. Our study identifies three key differences between developer and clinician mental models of XAI, including opposing goals (model interpretability vs. clinical plausibility), different sources of truth (data vs. patient), and the role of exploring new vs. exploiting old knowledge. Based on our findings, we propose design solutions that can help address the XAI conundrum in healthcare, including the use of causal inference models, personalized explanations, and ambidexterity between exploration and exploitation mindsets. Our study highlights the importance of considering the perspectives of both developers and clinicians in the design of XAI systems and provides practical recommendations for improving the effectiveness and usability of XAI in healthcare.
ICU Cockpit: a platform for collecting multimodal waveform data, AI-based computational disease modeling and real-time decision support in the intensive care unit
2022-05-13, Boss, Jens Michael, Narula, Gagan, Straessle, Christian, Willms, Jan, Suter, Susanne, Buehler, Christof, Muroi, Carl, Mack, David Jule, Seric, Marko, Baumann, Daniel, Keller, Emanuela, Azzati, Jan, Brodbeck, Dominique, Lüthy, Rahel
ICU Cockpit: a secure, fast, and scalable platform for collecting multimodal waveform data, online and historical data visualization, and online validation of algorithms in the intensive care unit. We present a network of software services that continuously stream waveforms from ICU beds to databases and a web-based user interface. Machine learning algorithms process the data streams and send outputs to the user interface. The architecture and capabilities of the platform are described. Since 2016, the platform has processed over 89 billion data points (N = 979 patients) from 200 signals (0.5–500 Hz) and laboratory analyses (once a day). We present an infrastructure-based framework for deploying and validating algorithms for critical care. The ICU Cockpit is a Big Data platform for critical care medicine, especially for multimodal waveform data. Uniquely, it allows algorithms to seamlessly integrate into the live data stream to produce clinical decision support and predictions in clinical practice.