Miho, Enkelejda

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Miho
Vorname
Enkelejda
Name
Miho, Enkelejda

Suchergebnisse

Gerade angezeigt 1 - 10 von 18
  • Publikation
    Benchmarking immunoinformatic tools for the analysis of antibody repertoire sequences
    (Oxford University Press, 24.12.2019) Smakaj, Erand; Babrak, Lmar; Tosoni, Deniz David; Galli, Christa; Miho, Enkelejda [in: Bioinformatics]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Maturation of the human B-cell receptor repertoire with age
    (Cold Spring Harbor Laboratory, 20.12.2019) Ghraichy, Marie; Galson, Jacob D.; Kovaltsuk, Aleksandr; Niederhäusern, Valentin von; Schmid, Jana Pachlopnik; Recher, Mike; Jauch, Annaïse J; Miho, Enkelejda; Kelly, Dominic F.; Deane, Charlotte M.; Trück, Johannes [in: bioRxiv]
    B cells play a central role in adaptive immune processes, mainly through the production of antibodies. The maturation of the B-cell system with age is poorly studied. We extensively investigated age-related alterations of naïve and antigen-experienced B-cell receptor (BCR) repertoires. The most significant changes were observed in the first 10 years of life, and were characterized by altered immunoglobulin gene usage and an increased frequency of mutated antibodies structurally diverging from their germline precursors. Older age was associated with an increased usage of downstream constant region genes and fewer antibodies with self-reactive properties. As mutations accumulated with age, the frequency of germline-encoded self-reactive antibodies decreased, indicating a possible beneficial role of self-reactive B-cells in the developing immune system. Our results suggest a continuous process of change through childhood across a broad range of parameters characterizing BCR repertoires and stress the importance of using well-selected, age-appropriate controls in BCR studies
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Large-scale network analysis reveals the sequence space architecture of antibody repertoires
    (Nature, 01.12.2019) Miho, Enkelejda; Roškar, Rok; Greiff, Victor; Reddy, Sai T. [in: Nature Communications]
    The architecture of mouse and human antibody repertoires is defined by the sequence similarity networks of the clones that compose them. The major principles that define the architecture of antibody repertoires have remained largely unknown. Here, we establish a high-performance computing platform to construct large-scale networks from comprehensive human and murine antibody repertoire sequencing datasets (>100,000 unique sequences). Leveraging a network-based statistical framework, we identify three fundamental principles of antibody repertoire architecture: reproducibility, robustness and redundancy. Antibody repertoire networks are highly reproducible across individuals despite high antibody sequence dissimilarity. The architecture of antibody repertoires is robust to the removal of up to 50–90% of randomly selected clones, but fragile to the removal of public clones shared among individuals. Finally, repertoire architecture is intrinsically redundant. Our analysis provides guidelines for the large-scale network analysis of immune repertoires and may be used in the future to define disease-associated and synthetic repertoires.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Large-scale network analysis reveals the sequence space architecture of antibody repertoires
    (Nature, 21.03.2019) Miho, Enkelejda [in: Nature Communications]
    The architecture of mouse and human antibody repertoires is defined by the sequence similarity networks of the clones that compose them. The major principles that define the architecture of antibody repertoires have remained largely unknown. Here, we establish a high-performance computing platform to construct large-scale networks from comprehensive human and murine antibody repertoire sequencing datasets (>100,000 unique sequences). Leveraging a network-based statistical framework, we identify three fundamental principles of antibody repertoire architecture: reproducibility, robustness and redundancy. Antibody repertoire networks are highly reproducible across individuals despite high antibody sequence dissimilarity. The architecture of antibody repertoires is robust to the removal of up to 50–90% of randomly selected clones, but fragile to the removal of public clones shared among individuals. Finally, repertoire architecture is intrinsically redundant. Our analysis provides guidelines for the large-scale network analysis of immune repertoires and may be used in the future to define disease-associated and synthetic repertoires.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Prediction of personal antibody repertoires
    (28.01.2019) Miho, Enkelejda
    06 - Präsentation
  • Publikation
    Network Modeling to Predict Personal Immune Scenarios
    (17.01.2019) Miho, Enkelejda
    06 - Präsentation
  • Publikation
    Augmenting adaptive immunity. Progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires
    (Royal Society of Chemistry, 2019) Brown, Alex J.; Snapkov, Igor; Akbar, Rahmad; Pavlović, Milena; Miho, Enkelejda; Sandve, Geir K.; Greiff, Victor [in: Molecular Systems Design & Engineering]
    The adaptive immune system is a natural diagnostic sensor and therapeutic. It recognizes threats earlier than clinical symptoms manifest and neutralizes antigens with exquisite specificity. Recognition specificity and broad reactivity are enabled via adaptive B- and T-cell receptors: the immune receptor repertoire. The human immune system, however, is not omnipotent. Our natural defense system sometimes loses the battle to parasites and microbes and even turns against us in the case of cancer and (autoimmune) inflammatory disease. A long-standing dream of immunoengineers has been, therefore, to mechanistically understand how the immune system “sees”, “reacts” and “remembers” (auto)antigens. Only very recently, experimental and computational methods have achieved sufficient quantitative resolution to start querying and engineering adaptive immunity with high precision. Specifically, these innovations have been applied with the greatest fervency and success in immunotherapy, autoimmunity and vaccine design. The work here highlights advances, challenges and future directions of quantitative approaches which seek to advance the fundamental understanding of immunological phenomena, and reverse engineer the immune system to produce auspicious biopharmaceutical drugs and immunodiagnostics. Our review shows how the merger of fundamental immunology, computational immunology and (digital) biotechnology advances both immunological knowledge and immunoengineering methodologies.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Traditional and Digital Biomarkers: Two Worlds Apart?
    (Karger, 2019) Babrak, Lmar; Miho, Enkelejda [in: Digital Biomarkers]
    The identification and application of biomarkers in the clinical and medical fields has an enor - mous impact on society. The increase of digital devices and the rise in popularity of health- related mobile apps has produced a new trove of biomarkers in large, diverse, and complex data. However, the unclear definition of digital biomarkers, population groups, and their in - tersection with traditional biomarkers hinders their discovery and validation. We have identi - fied current issues in the field of digital biomarkers and put forth suggestions to address them during the DayOne Workshop with participants from academia and industry. We have found similarities and differences between traditional and digital biomarkers in order to synchronize semantics, define unique features, review current regulatory procedures, and describe novel applications that enable precision medicine.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Real World Data - Technologies, Research Questions and Applications - Study in Cooperation - School of Business & School of Life Science
    (Fachhochschule Nordwestschweiz FHNW, 2019) Grimberg, Frank; Asprion, Petra; Schneider, Bettina; Miho, Enkelejda; Babrak, Lmar; Habbabeh, Ali
    In this research report of the University of Applied Sciences and Arts Northwestern Switzerland (FHNW), a classification of ‘Real World Data’ into the research landscape takes place. In addition, an identification of the still open research questions is done based on the fundamental principles and properties. The manifold potential of this relatively new data set is illustrated by a presentation of the already existing but also conceivable future application possibilities. Finally, the contribution of the FHNW, based on its specific competencies, to the further application of the dataset is shown.
    05 - Forschungs- oder Arbeitsbericht