Miho, Enkelejda
Lade...
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Miho
Vorname
Enkelejda
Name
Miho, Enkelejda
3 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 3 von 3
- PublikationUnconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction(Nature, 19.12.2022) Robert, Philippe A.; Akbar, Rahmad; Frank, Robert; Pavlović, Milena; Widrich, Michael; Snapkov, Igor; Slabodkin, Andrei; Chernigovskaya, Maria; Scheffer, Lonneke; Smorodina, Eva; Rawat, Puneet; Mehta, Brij Bhushan; Vu, Mai Ha; Mathisen, Ingvild Frøberg; Prósz, Aurél; Abram, Krzysztof; Olar, Alex; Miho, Enkelejda; Haug, Dag Trygve Tryslew; Lund-Johansen, Fridtjof; Hochreiter, Sepp; Haff, Ingrid Hobæk; Klambauer, Günter; Sandve, Geir Kjetil; Greiff, Victor [in: Nature Computational Science]Machine learning (ML) is a key technology for accurate prediction of antibody–antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody–antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMaturation of the human immunoglobulin heavy chain repertoire with age(Frontiers Research Foundation, 06.08.2020) Ghraichy, Marie; Galson, Jacob D.; Kovaltsuk, Aleksandr; von Niederhäusern, Valentin; Pachlopnik Schmid, Jana; Recher, Mike; Jauch, Annaïse J.; Miho, Enkelejda; Kelly, Dominic F.; Deane, Charlotte M.; Trück, Johannes [in: Frontiers in Immunology]B cells play a central role in adaptive immune processes, mainly through the production of antibodies. The maturation of the B cell system with age is poorly studied. We extensively investigated age-related alterations of naïve and antigen-experienced immunoglobulin heavy chain (IgH) repertoires. The most significant changes were observed in the first 10 years of life, and were characterized by altered immunoglobulin gene usage and an increased frequency of mutated antibodies structurally diverging from their germline precursors. Older age was associated with an increased usage of downstream IgH constant region genes and fewer antibodies with self-reactive properties. As mutations accumulated with age, the frequency of germline-encoded self-reactive antibodies decreased, indicating a possible beneficial role of self-reactive B cells in the developing immune system. Our results suggest a continuous process of change through childhood across a broad range of parameters characterizing IgH repertoires and stress the importance of using well-selected, age-appropriate controls in IgH studies.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMaturation of the human B-cell receptor repertoire with age(Cold Spring Harbor Laboratory, 20.12.2019) Ghraichy, Marie; Galson, Jacob D.; Kovaltsuk, Aleksandr; Niederhäusern, Valentin von; Schmid, Jana Pachlopnik; Recher, Mike; Jauch, Annaïse J; Miho, Enkelejda; Kelly, Dominic F.; Deane, Charlotte M.; Trück, Johannes [in: bioRxiv]B cells play a central role in adaptive immune processes, mainly through the production of antibodies. The maturation of the B-cell system with age is poorly studied. We extensively investigated age-related alterations of naïve and antigen-experienced B-cell receptor (BCR) repertoires. The most significant changes were observed in the first 10 years of life, and were characterized by altered immunoglobulin gene usage and an increased frequency of mutated antibodies structurally diverging from their germline precursors. Older age was associated with an increased usage of downstream constant region genes and fewer antibodies with self-reactive properties. As mutations accumulated with age, the frequency of germline-encoded self-reactive antibodies decreased, indicating a possible beneficial role of self-reactive B-cells in the developing immune system. Our results suggest a continuous process of change through childhood across a broad range of parameters characterizing BCR repertoires and stress the importance of using well-selected, age-appropriate controls in BCR studies01A - Beitrag in wissenschaftlicher Zeitschrift