Miho, Enkelejda
Lade...
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Miho
Vorname
Enkelejda
Name
Miho, Enkelejda
1 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 1 von 1
- PublikationA compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding(Cell Press, 16.03.2021) Miho, Enkelejda; Akbar, Rahmad; Pavlovic, Milena; Snapkov, Igor; Slabodkin, Andrei; Scheffer, Lonneke; Haff, Ingrid Hobaed; Tryslew Haug, Dag Trygve; Lund-Johanson, Fridtjof; Safonova, Yana; Greiff, Victor; Robert, Philippe; Jeliazkov, Jeliazko; Weber, Cedric; Sandve, Geir [in: Cell Reports]Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.01A - Beitrag in wissenschaftlicher Zeitschrift