Miho, Enkelejda

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Miho
Vorname
Enkelejda
Name
Miho, Enkelejda

Suchergebnisse

Gerade angezeigt 1 - 10 von 16
Vorschaubild nicht verfügbar
Publikation

Unconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction

2022-12-19, Robert, Philippe A., Akbar, Rahmad, Pavlović, Milena, Widrich, Michael, Snapkov, Igor, Slabodkin, Andrei, Chernigovskaya, Maria, Scheffer, Lonneke, Smorodina, Eva, Rawat, Puneet, Mehta, Brij Bhushan, Vu, Mai Ha, Mathisen, Ingvild Frøberg, Prósz, Aurél, Abram, Krzysztof, Olar, Axel, Miho, Enkelejda, Haug, Dag Trygve Tryslew, Lund-Johansen, Fridtjof, Hochreiter, Sepp, Hobæk Haff, Ingrid, Klambauer, Günter, Sandve, Geir Kjetil, Greiff, Victor

Machine learning (ML) is a key technology for accurate prediction of antibody–antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody–antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.

Lade...
Vorschaubild
Publikation

Adaptive immune receptor repertoire (AIRR) community guide to TR and IG gene annotation

2022-05-28, Babrak, Lmar, Marquez, Susanna, Busse, Christian, Lees, William, Miho, Enkelejda, Ohlin, Mats, Rosenfeld, Aaron, Stervbo, Ulrik, Watson, Corey, Schramm, Chaim, Langerak, Anton W.

High-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR) has revolutionized the ability to carry out large-scale experiments to study the adaptive immune response. Since the method was first introduced in 2009, AIRR sequencing (AIRR-Seq) has been applied to survey the immune state of individuals, identify antigen-specific or immune-state-associated signatures of immune responses, study the development of the antibody immune response, and guide the development of vaccines and antibody therapies. Recent advancements in the technology include sequencing at the single-cell level and in parallel with gene expression, which allows the introduction of multi-omics approaches to understand in detail the adaptive immune response. Analyzing AIRR-seq data can prove challenging even with high-quality sequencing, in part due to the many steps involved and the need to parameterize each step. In this chapter, we outline key factors to consider when preprocessing raw AIRR-Seq data and annotating the genetic origins of the rearranged receptors. We also highlight a number of common difficulties with common AIRR-seq data processing and provide strategies to address them.

Lade...
Vorschaubild
Publikation

Prospective artificial intelligence to dissect the dengue immune response and discover therapeutics

2021-06-15, Natali, Eriberto, Babrak, Lmar, Miho, Enkelejda

Dengue virus (DENV) poses a serious threat to global health as the causative agent of dengue fever. The virus is endemic in more than 128 countries resulting in approximately 390 million infection cases each year. Currently, there is no approved therapeutic for treatment nor a fully efficacious vaccine. The development of therapeutics is confounded and hampered by the complexity of the immune response to DENV, in particular to sequential infection with different DENV serotypes (DENV1–5). Researchers have shown that the DENV envelope (E) antigen is primarily responsible for the interaction and subsequent invasion of host cells for all serotypes and can elicit neutralizing antibodies in humans. The advent of high-throughput sequencing and the rapid advancements in computational analysis of complex data, has provided tools for the deconvolution of the DENV immune response. Several types of complex statistical analyses, machine learning models and complex visualizations can be applied to begin answering questions about the B- and T-cell immune responses to multiple infections, antibody-dependent enhancement, identification of novel therapeutics and advance vaccine research.

Lade...
Vorschaubild
Publikation

The real-world data challenges radar: a review on the challenges and risks regarding the use of real-world data

2021, Grimberg, Frank, Asprion, Petra, Schneider, Bettina, Miho, Enkelejda, Babrak, Lmar, Habbabeh, Ali

Background: The life science industry has a strong interest in real-world data (RWD), a term that is currently being used in many ways and with varying definitions depending on the source. In this review article, we provide a summary overview of the challenges and risks regarding the use of RWD and its translation into real-world evidence and provide a classification and visualization of RWD challenges by means of the RWD Challenges Radar. Summary: Based on a systematic literature search, we identified 3 types of challenges – organizational, technological, and people-based – that must be addressed when deriving evidence from RWD to be used in drug approval and other applications. It further demonstrates that numerous different aspects, for example, related to the application field and the associated industry, must be considered. A key finding in our review is that the regulatory landscape must be carefully assessed before utilizing RWD. Key Messages: Establishing awareness and insight into the challenges and risks regarding the use of RWD will be key to taking full advantage of the RWD potential. As a result of this review, an “RWD Challenges Radar” will support the establishment of awareness by providing a comprehensive overview of the relevant aspects to be considered when employing RWD.

Lade...
Vorschaubild
Publikation

RWD-Cockpit. Application for quality assessment of real-world data

2022-10-18, Degen, Markus, Babrak, Lmar, Smakaj, Erand, Agac, Teyfik, Asprion, Petra, Grimberg, Frank, Van der Werf, Daan, Van Ginkel, Erwin Willem, Tosoni, Deniz David, Clay, Ieuan, Brodbeck, Dominique, Natali, Eriberto, Schkommodau, Erik, Miho, Enkelejda

Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence.

Lade...
Vorschaubild
Publikation

RWD-Cockpit: application for quality assessment of real-world data

2022, Babrak, Lmar, Smakaj, Erand, Agac, Teyfik, Asprion, Petra, Grimberg, Frank, Van der Werf, Daan, van Ginkel, Erwin Willem, Tosoni, Deniz David, Clay, Ieuan, Degen, Markus, Brodbeck, Dominique, Natali, Eriberto Noel, Schkommodau, Erik, Miho, Enkelejda

Background: Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence. Objective: To address the need to qualify RWD, we aimed to build a web application as a tool to translate characterization of some quality parameters of RWD into a metric and propose a standard framework for evaluating the quality of the RWD. Methods: The RWD-Cockpit systematically scores data sets based on proposed quality metrics and customizable variables chosen by the user. Sleep RWD generated de novo and publicly available data sets were used to validate the usability and applicability of the web application. The RWD quality score is based on the evaluation of 7 variables: manageability specifies access and publication status; complexity defines univariate, multivariate, and longitudinal data; sample size indicates the size of the sample or samples; privacy and liability stipulates privacy rules; accessibility specifies how the data set can be accessed and to what granularity; periodicity specifies how often the data set is updated; and standardization specifies whether the data set adheres to any specific technical or metadata standard. These variables are associated with several descriptors that define specific characteristics of the data set. Results: To address the need to qualify RWD, we built the RWD-Cockpit web application, which proposes a framework and applies a common standard for a preliminary evaluation of RWD quality across data sets—molecular, phenotypical, and social—and proposes a standard that can be further personalized by the community retaining an internal standard. Applied to 2 different case studies—de novo–generated sleep data and publicly available data sets—the RWD-Cockpit could identify and provide researchers with variables that might increase quality Conclusions: The results from the application of the framework of RWD metrics implemented in the RWD-Cockpit application suggests that multiple data sets can be preliminarily evaluated in terms of quality using the proposed metrics. The output scores—quality identifiers—provide a first quality assessment for the use of RWD. Although extensive challenges remain to be addressed to set RWD quality standards, our proposal can serve as an initial blueprint for community efforts in the characterization of RWD quality for regulated settings.

Lade...
Vorschaubild
Publikation

Single Cell Gene Expression analysis in a 3D microtissue liver model reveals cell type-specific responses to pro-fibrotic TGF-β1 stimulation

2021-04-22, Messner, Catherine, Babrak, Lmar, Titolo, Gaia, Caj, Michaela, Miho, Enkelejda, Suter-Dick, Laura

3D cell culture systems are widely used to study disease mechanisms and therapeutic interventions. Multicellular liver microtissues (MTs) comprising HepaRG, hTERT-HSC and THP-1 maintain multicellular interactions and physiological properties required to mimic liver fibrosis. However, the inherent complexity of multicellular 3D-systems often hinders the discrimination of cell type specific responses. Here, we aimed at applying single cell sequencing (scRNA-seq) to discern the molecular responses of cells involved in the development of fibrosis elicited by TGF-β1. To obtain single cell suspensions from the MTs, an enzymatic dissociation method was optimized. Isolated cells showed good viability, could be re-plated and cultured in 2D, and expressed specific markers determined by scRNA-seq, qRT-PCR, ELISA and immunostaining. The three cell populations were successfully clustered using supervised and unsupervised methods based on scRNA-seq data. TGF-β1 led to a fibrotic phenotype in the MTs, detected as decreased albumin and increased αSMA expression. Cell-type specific responses to the treatment were identified for each of the three cell types. They included HepaRG damage characterized by a decrease in cellular metabolism, prototypical inflammatory responses in THP-1s and extracellular matrix remodeling in hTERT-HSCs. Furthermore, we identified novel cell-specific putative fibrosis markers in hTERT-HSC (COL15A1), and THP-1 (ALOX5AP and LAPTM5).

Vorschaubild nicht verfügbar
Publikation

Sequencing of the M protein. Toward personalized medicine in monoclonal gammopathies

2022-08-23, Cascino, Pasquale, Nevone, Alice, Piscitelli, Maggie, Scopelliti, Claudia, Girelli, Maria, Mazzini, Giulia, Caminito, Serena, Russo, Giancarlo, Milani, Paolo, Basset, Marco, Foli, Andrea, Fazio, Francesca, Casarini, Simona, Massa, Margherita, Bozzola, Margherita, Ripepi, Jessica, Sesta, Melania Antonietta, Acquafredda, Gloria, De Cicco, Marica, Moretta, Antonia, Rognoni, Paola, Milan, Enrico, Ricagno, Stefano, Lavatelli, Francesca, Petrucci, Maria Teresa, Klersy, Catherine, Merlini, Giampaolo, Palladini, Giovanni, Nuvolone, Mario, Miho, Enkelejda

Each patient with a monoclonal gammopathy has a unique monoclonal (M) protein, whose sequence can be used as a tumoral fingerprint to track the presence of the B cell or plasma cell (PC) clone itself. Moreover, the M protein can directly cause potentially life-threatening organ damage, which is dictated by the specific, patient's unique clonal light and/or heavy chain amino acid sequence, as in patients affected by immunoglobulin light chain (AL) amyloidosis.1 However, patients' specific M protein sequences remain mostly undefined and molecular mechanisms underlying M protein-related clinical manifestations are largely obscure.

Lade...
Vorschaubild
Publikation

Machine learning detects anti-DENV signatures in antibody repertoire sequences

2021-10-11, Horst, Alexander, Smakaj, Erand, Natali, Eriberto, Tosoni, Deniz David, Babrak, Lmar, Meier, Patrick, Miho, Enkelejda

Dengue infection is a global threat. As of today, there is no universal dengue fever treatment or vaccines unreservedly recommended by the World Health Organization. The investigation of the specific immune response to dengue virus would support antibody discovery as therapeutics for passive immunization and vaccine design. High-throughput sequencing enables the identification of the multitude of antibodies elicited in response to dengue infection at the sequence level. Artificial intelligence can mine the complex data generated and has the potential to uncover patterns in entire antibody repertoires and detect signatures distinctive of single virus-binding antibodies. However, these machine learning have not been harnessed to determine the immune response to dengue virus. In order to enable the application of machine learning, we have benchmarked existing methods for encoding biological and chemical knowledge as inputs and have investigated novel encoding techniques. We have applied different machine learning methods such as neural networks, random forests, and support vector machines and have investigated the parameter space to determine best performing algorithms for the detection and prediction of antibody patterns at the repertoire and antibody sequence levels in dengue-infected individuals. Our results show that immune response signatures to dengue are detectable both at the antibody repertoire and at the antibody sequence levels. By combining machine learning with phylogenies and network analysis, we generated novel sequences that present dengue-binding specific signatures. These results might aid further antibody discovery and support vaccine design.

Lade...
Vorschaubild
Publikation

A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding

2021-03-16, Miho, Enkelejda, Akbar, Rahmad, Pavlovic, Milena, Snapkov, Igor, Slabodkin, Andrei, Scheffer, Lonneke, Haff, Ingrid Hobaed, Tryslew Haug, Dag Trygve, Lund-Johanson, Fridtjof, Safonova, Yana, Greiff, Victor, Robert, Philippe, Jeliazkov, Jeliazko, Weber, Cedric, Sandve, Geir

Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.