Meier, Patrick

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Meier
Vorname
Patrick
Name
Meier, Patrick

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Publikation
    Author Correction. The dengue-specific immune response and antibody identification with machine learning
    (Nature, 20.01.2024) Natali, Eriberto Noel; Horst, Alexander; Meier, Patrick; Greiff, Victor; Nuvolone, Mario; Babrak, Lmar Marie; Fink, Katja; Miho, Enkelejda [in: npj Vaccines]
    Dengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    The dengue-specific immune response and antibody identification with machine learning
    (Nature, 20.01.2024) Natali, Eriberto Noel; Horst, Alexander; Meier, Patrick; Greiff, Victor; Nuvolone, Mario; Babrak, Lmar Marie; Fink, Katja; Miho, Enkelejda [in: npj Vaccines]
    Dengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Computational deconvolution of the dengue immune response complexity with identification of novel broadly neutralizing antibodies
    (21.09.2022) Natali, Eriberto Noel; Horst, Alexander; Meier, Patrick; Greiff, Victor; Nuvolone, Mario; Babrak, Lmar Marie; Djordjevic, Kristina; Fink, Katja; Traggiai, Elisabetta; Miho, Enkelejda
    Dengue virus poses a serious threat to global health as the causative agent of the dengue fever. Currently, there is no approved therapeutic, and broadly neutralizing antibodies recognizing all four serotypes may be an effective treatment. High-throughput immune repertoire sequencing and bioinformatic analysis enable in-depth understanding of the immune response in dengue infection. Here, we use these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences through investigation of antibody response in dengue. We observed challenging the immune system with dengue elicits the following signatures on the antibody repertoire: (i) an increase of the diversity in the CDR3 regions and the germline genes; (ii) a change in the architecture by eliciting power-law network distributions and enrichment in polar amino acids of the CDR3; (iii) an increase in the expression of transcription factors of the JNK/Fos pathways and ribosomal proteins. Moreover, our work demonstrates the applicability of computational methods and machine learning to high-throughput antibody repertoire sequencing datasets for neutralizing antibody candidate identification. Further investigation with antibody expression and functional assays is planned to validate the obtained results.
    06 - Präsentation