Zweifel, Lucian
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse
Multiscale characterisation of staple carbon fibre-reinforced polymers
2023-11-06, Zweifel, Lucian, Kupski, Julian, Dransfeld, Clemens, Caglar, Baris, Baz, Stephan, Cessario, Damian, Gresser, Götz T., Brauner, Christian
The aim of this study was to characterise the microstructural organisation of staple carbon fibre-reinforced polymer composites and to investigate their mechanical properties. Conventionally, fibre-reinforced materials are manufactured using continuous fibres. However, discontinuous fibres are crucial for developing sustainable structural second-life applications. Specifically, aligning staple fibres into yarn or tape-like structures enables similar usage to continuous fibre-based products. Understanding the effects of fibre orientation, fibre length, and compaction on mechanical performance can facilitate the fibres’ use as standard engineering materials. This study employed methods ranging from microscale to macroscale, such as image analysis, X-ray computed tomography, and mechanical testing, to quantify the microstructural organisations resulting from different alignment processing methods. These results were compared with the results of mechanical tests to validate and comprehend the relationship between fibre alignment and strength. The results show a significant influence of alignment on fibre orientation distribution, fibre volume fraction, tortuosity, and mechanical properties. Furthermore, different characteristics of the staple fibre tapes were identified and attributed to kinematic effects during movement of the sliver alignment unit, resulting in varying tape thicknesses and fuzzy surfaces.
In situ characterization of the reaction-diffusion behavior during the gradient interphase formation of polyetherimide with a high-temperature epoxy system
2022-01-21, Zweifel, Lucian, Brauner, Christian, Teuwen, Julie, Dransfeld, Clemens
This study presents two novel methods for in situ characterization of the reaction-diffusion process during the co-curing of a polyetherimide thermoplastic interlayer with an epoxy-amine thermoset. The first method was based on hot stage experiments using a computer vision point tracker algorithm to detect and trace diffusion fronts, and the second method used space- and time-resolved Raman spectroscopy. Both approaches provided essential information, e.g., type of transport phenomena and diffusion rate. They can also be combined and serve to elucidate phenomena occurring during diffusion up to phase separation of the gradient interphase between the epoxy system and the thermoplastic. Accordingly, it was possible to distinguish reaction-diffusion mechanisms, describe the diffusivity of the present system and evaluate the usability of the above-mentioned methods.