Sawant, Parantapa
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse
Experimental demonstration of grid-supportive scheduling of a polygeneration system using economic-MPC
2021-11-12, Sawant, Parantapa, Bürger, Adrian, Felsmann, Clemens, Pfafferott, Jens
Drawing off the technical flexibility of building polygeneration systems to support a rapidly expanding renewable electricity grid requires the application of advanced controllers like model predictive control (MPC) that can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints amongst other features. In this original work, an economic-MPC-based optimal scheduling of a real-world building energy system is demonstrated and its performance is evaluated against a conventional controller. The demonstration includes the steps to integrate an optimisation-based supervisory controller into a standard building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms for solving complex nonlinear mixed integer optimal control problems. With the MPC, quantitative benefits in terms of 6–12% demand-cost savings and qualitative benefits in terms of better controller adaptability and hardware-friendly operation are identified. Further research potential for improving the MPC framework in terms of field-level stability, minimising constraint violations, and inter-system communication for its deployment in a prosumer-network is also identified.
An energy-economic analysis of real-world hybrid building energy systems
2021-11, Sawant, Parantapa, Braasch, Christian, Koch, Manuel, Bürger, Adrian, Kallio, Sonja
A coordinated operation of decentralised micro-scale hybrid energy systems within a locally managed network such as a district or neighbourhood will play a significant role in the sector-coupled energy grid of the future. A quantitative analysis of the effects of the primary energy factors, energy conversion efficiencies, load profiles, and control strategies on their energy-economic balance can aid in identifying important trends concerning their deployment within such a network. In this contribution, an analysis of the operational data from five energy laboratories in the trinational Upper-Rhine region is evaluated and a comparison to a conventional reference system is presented. Ten exemplary data-sets representing typical operation conditions for the laboratories in different seasons and the latest information on their national energy strategies are used to evaluate the primary energy consumption, CO2 emissions, and demand-related costs. Various conclusions on the ecologic and economic feasibility of hybrid building energy systems are drawn to provide a toe-hold to the engineering community in their planning and development.
Demonstration of optimal scheduling for a building heat pump system using eEconomic-MPC
2021, Sawant, Parantapa, Villegas Mier, Oscar, Schmidt, Michael, Pfafferott, Jens
It is considered necessary to implement advanced controllers such as model predictive control (MPC) to utilize the technical flexibility of a building polygeneration system to support the rapidly expanding renewable electricity grid. These can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints, amongst other features. One of the main issues identified in the literature regarding deploying these controllers is the lack of experimental demonstrations using standard components and communication protocols. In this original work, the economic-MPC-based optimal scheduling of a real-world heat pump-based building energy plant is demonstrated, and its performance is evaluated against two conventional controllers. The demonstration includes the steps to integrate an optimization-based supervisory controller into a typical building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms to solve a mixed integer quadratic problem. Technological benefits in terms of fewer constraint violations and a hardware-friendly operation with MPC were identified. Additionally, a strong dependency of the economic benefits on the type of load profile, system design and controller parameters was also identified. Future work for the quantification of these benefits, the application of machine learning algorithms, and the study of forecast deviations is also proposed.