Saxer, Sina

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Saxer
Vorname
Sina
Name
Saxer, Sina

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
Vorschaubild nicht verfügbar
Publikation

Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro

2018-10, Koch, Franziska, Wolff, Anne, Mathes, Stephanie, Pieles, Uwe, Saxer, Sina, Kreikemeyer, Bernd, Peters, Kirsten

The regeneration of tissue defects at the interface between soft and hard tissue, eg, in the periodontium, poses a challenge due to the divergent tissue requirements. A class of biomaterials that may support the regeneration at the soft-to-hard tissue interface are self-assembling peptides (SAPs), as their physicochemical and mechanical properties can be rationally designed to meet tissue requirements.

Vorschaubild nicht verfügbar
Publikation

Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition

2018-03, Koch, Franziska, König, Finja, Meyer, Nina, Gattlen, Jasmin, Pieles, Uwe, Peters, Kirsten, Kreikemeyer, Bernd, Mathes, Stephanie, Saxer, Sina, Müller, Michael

Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy.

Vorschaubild nicht verfügbar
Publikation

Preliminary microstructural investigation of Mg produced by SLM

2016, Saxer, Sina, Rüegg, Jasmine, Dietschy, Alain, Schumacher, Ralf, de Wild, Michael, Wiese, Björn, Wohlfender, Fabian