Dorusch, Falk
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse
Edelschrott oder nutzbare Ressource? Gebrauchte Fahrzeugakkus auf dem Weg zum neuen Leben als Hausstromsspeicher
2016-08, Dorusch, Falk
Die Zahl rein elektrisch betriebener Fahrzeuge steigt stetig an. Besonders die Zahl an Pedelec -ElektrovVelos nimmt seit Jahren zu. Fahrzeugakkus, die nicht mehr den Reichweiten-Ansprüchen der Nutzer entsprechen, werden in der Lebenszeit der Fahrzeuge oft mehrfach ausgetauscht. Untersuchungen zeigen jedoch, dass gebrauchte Akkus kein Elektroschrott sind, sondern noch über einen längeren Zeitraum als stationärer Elektrizitätsspeicher für den Strom einer Photovoltaikanlage genutzt werden können. Diese Art der Nachnutzung ist aus zwei Gründen ökologisch besonders sinnvoll. Zum einen hilft ein Batteriespeicher, auf dem Gebäudedach produzierten Solarstrom besser selbst zu nutzen. Zum anderen schont die längere Nutzung der mit erheblichen Ressourcen- und Energieaufwand hergestellten Fahrzeugakkus die Umwelt. Das Institut Energie am Bau der Fachhochschule Nordwestschweiz (IEBau FHNW) begleitet im Rahmen der 2000-Watt-Gesellschaft – Pilotregion Basel Pilot- und Demonstrationsprojekte in den Bereichen Bauen, erneuerbare Energien und Fahrzeuge
Transformation eines Kohlesilos zum Solarkraftwerk mit farbigen PV-Modulen und Second-Life Speicher
2016, Menn, Claudio, Steinke, Gregor, Dorusch, Falk, Geissler, Achim
Das ehemalige Kohlesilo im Gundeldinger Feld in Basel wurde umgebaut und bietet nun Platz für Büros, Praxisräume, Konferenzzimmer und eine Zirkusschule. An den Fassaden und auf dem Dach wurde eine PV-Anlage mit farbigen Modulen installiert. Um den Eigenverbrauch der vor Ort erzeugten Elektrizität zu erhöhen und das öffentliche Stromnetz zu entlasten, werden gebrauchte Lithium-Ionen-Akkus aus Mobilitätsanwendungen als Second-Life Batteriespeicher eingesetzt. Die PV-Anlage und der Batteriespeicher werden in einem Messprojekt detailliert untersucht. As a visible sign of the shift from fossil fuels to renewable energies, the former coal silo and heating plant of the machine factory Sulzer Burckhardt AG in the „Gundeldinger Feld“ in Basel is covered with colored PV modules. As part of the remodeling of the silo into office spaces, a building integrated PV system is installed on two facades and on the roof. In order to increase the self-consumption of the electricity that is generated on-site and to relieve the public grid, previously used lithium-ion batteries from electric vehicles are used as Second Life battery energy storage. The PV system and battery storage are investigated in detail in a monitoring project.
Automatische Fensterlüftung in Schulbauten -Schlussbericht
2015-04-22, Dorusch, Falk, Hall, Monika
Durch eine automatische, in Abhängigkeit des Kohlendioxidgehalts (CO2) der Raumluft geregelte Fensterlüftungsanlage kann die Raumluftqualität in Schulgebäuden verbessert werden. Der vorliegende Schlussbericht fasst die Ergebnisse der Untersuchungen zur Effektivität einer automatisierten Fensterlüftung am Schulhauskomplex Ilgen A und B in Zürich-Hottingen zusammen. Es wird gezeigt, welchen Einfluss die automatische Fensterlüftung auf die Raumluftqualität sowie den thermischen Komfort der Klassen- und Gruppenräume in den Schulhäusern A und B hat. Der zeitliche Fokus der Untersuchungen liegt dabei auf den Zeiträumenzwischen 20.08.2012 und 28.02.2013 sowie zwischen 17.06.2013 und 21.06.2013. Raumluftqualität Anhand der Daten zum CO2-Gehalt und zur Raumlufttemperatur wird die Raumluftqualität, die während der Unterrichtszeiten vorherrscht, für die Sommer-, Herbst- und Wintersaison separat bewertet. Es zeigt sich ein saisonal verschiedenes Bild: • Während der Sommermonate erreicht die Raumluft in beiden Schulgebäuden in fast allen Räumen eine gute bis ausreichende Qualität. • Mit Beginn der Heizperiode tritt eine Verschlechterung ein, die insbesondere in den Wintermonaten zu hohen CO2-Gehalten in den Räumen der oberen Stockwerke beider Schulhäuser führt. • Während der Wintersaison wird folgende Raumluftcharakteristik beobachtet: Schulhaus A: Der Raum mit der besten Raumluftqualität weist in mehr als 75% der Unterrichtszeit CO2-Gehalte unterhalb von 800 ppm auf. Ein Raum fällt durch eine hohe CO2-Belastung auf. In diesem Raum werden in 27% der Lektionen mehr als 1500 ppm CO2 in der Raumluft gemessen. In den sieben weiteren Räumen werden vorwiegend CO2 -Gehalte zwischen 800 und 1500 ppm gemessen. Schulhaus B: Ein Raum erreicht in mehr als 75% der Unterrichtszeit akzeptable CO2 -Gehalte unterhalb von 800 ppm. Vier Räume sind stark belastet und weisen in 57 bis 68% der Lektionen mehr als 1500 ppm CO2 in der Raumluft auf. In den 14 verbleibenden Räumen werden überwiegend CO2 -Gehalte zwischen 800 und 1500 ppm beobachtet. Analyse der Anlagenfunktion Die Analyse der Messwerte der automatischen Fensterlüftungsanlage ergibt keinen Zusammenhang zwischen der Öffnungsweite der Fenster und dem CO2-Gehalt des jeweiligen Raumes. Ebenfalls ist den Messwerten kein Zusammenhang zwischen der Öffnungsdauer mit dem CO2-Gehalt zu entnehmen. Es ist derzeit ungeklärt, ob die Fensteröffnungsweite proportional zum CO2-Gehalt geregelt wird. Optimierungspotential Um die CO2-Gehalte der hoch belasteten Räume während des Unterrichts auf Werte unterhalb der physiologisch bedenklichen Schwelle zu senken sind folgende Massnahmen denkbar: • die Aktivierung des CO2-proportionalen Lüftungsbetriebs, • die Verlängerung der Stosslüftungsdauer am Morgen und in den Pausen, • das Herabsetzen der CO2-Schwellenkonzentration, ab der die Fenster geöffnet werden, • ein genaues Anpassen der Öffnungsweiten an die Druck- und Anströmsituation (Luv/Lee), • der Einbau von Überströmöffnungen in Räumen ohne Querlüftmöglichkeit, • das Umplatzieren von Sonnenschutzstoren. Die Überwachung der Funktionsfähigkeit der Anlage ist derzeit sehr zeitaufwändig. Für einen schnellen Überblick über alle Räume ist es im Moment notwendig, die CO2- und Temperaturverläufe aller Räume einzeln aufzurufen. Zur Vereinfachung der Funktionskontrolle würden sich folgende Instrumente anbieten: • ein in der Steuersoftware programmiertes Übersichtstableau zur schnellen Erfassung der aktuellen Betriebssituation, der Raumluftqualitäten und der Raumlufttemperaturen, • die Etablierung eines qualitativen Bewertungsindikators z.B. in Form einer Raumluftampel für CO2 und Temperatur in den einzelnen Räumen.
Edelschrott oder nutzbare Ressource? Gebrauchte Fahrzeugakkus auf dem Weg zum neuen Leben als Hausstromsspeicher
2016-04, Dorusch, Falk
Die Zahl rein elektrisch betriebener Fahrzeuge steigt stetig an. Besonders Pedelec-Velos haben einen hohen Anteil daran. Fahrzeugakkus, die nicht mehr den Reichweiten-Ansprüchen der Nutzer entspre-chen, werden in der Lebenszeit der Fahrzeuge oft mehrfach ausgetauscht. Untersuchungen zeigen je-doch, dass gebrauchte Fahrzeugakkus kein Elektroschrott sind, sondern noch über einen längeren Zeit-raum als stationärer Elektrizitätsspeicher für den Strom einer Photovoltaikanlage genutzt werden kön-nen. Diese Art der Nachnutzung ist aus zwei Gründen ökologisch besonders sinnvoll. Zum einen hilft ein Bat-teriespeicher, solar produzierten Strom im Gebäude besser selbst zu nutzen. Zum anderen schont die längere Nutzung der mit erheblichen Ressourcen- und Energieaufwand hergestellten Fahrzeugakkus die Umwelt. Das Institut Energie am Bau der Fachhochschule Nordwestschweiz begleitet im Rahmen der 2000-Watt-Gesellschaft – Pilotregion Basel Pilot- und Demonstrationsprojekte in den Bereichen Bauen, erneuerba-re Energien und Fahrzeuge. Einige dieser Projekte sollen im Sinne von Feldversuchen die Praxistaug-lichkeit neuer Ideen und Technologien im harten Alltagsbetrieb zeigen.
Energiekonzepte Weissenstein
2016, Menn, Claudio, Dorusch, Falk, Geissler, Achim
Die historische Siedlung Weissenstein in Bern soll denkmalgerecht und nachhaltig saniert werden. Im Rahmen des hier zusammengefassten Projektes wurden Energiekonzepte entwickelt. Ausgehend von 10 Gebäudeenergieausweisen der Kantone (GEAK) als Grundlage für die Bedarfsanalyse werden 3 Energieversorgungs- sowie 3 Gebäudesanierungsvarianten hinsichtlich technischer Umsetzung, Energieeffizienz, Umweltauswirkungen und Wirtschaftlichkeit bewertet. Zudem wird mit einem mittelfristigen und langfristigen Zeithorizont ein Entwicklungspfad zur schrittweisen Umsetzung der Massnahmen aufgezeigt.
Gebäudeintegration von gebrauchten Batterien als Second-Life Stromspeichersysteme
2015-09, Menn, Claudio, Geissler, Achim, Kim, David Pascal, Dorusch, Falk
In vorliegendem Beitrag wird die Untersuchung der Nachnutzung von gebrauchten Batterien aus der Elektromobilität als Second-Life Stromspeicher (engl.:“Battery Energy Storage“ (BES)) in Gebäuden hinsichtlich technischen, ökonomischen und ökologischen Kriterien beschrieben. Basierend auf energiepolitischen Szenarien der Schweiz (Energieperspektiven 2050) werden eine Nettokapitalwert (engl.: „Net Present Value“ (NPV))- Analyse und eine Ökobilanzierung durchgeführt. Die Ergebnisse zu einem typischen Einfamilienhaus mit variierenden PV und Second-Life BES Systemgrössen (1-30 kWp und kWh) zeigen keinen positiven NPV25 (Investitionszeitraum 25 Jahre) gegeben Rahmenbedingen aus dem Jahre 2015 und einer betrachteten Anzahl CL (engl.: „Cycle Life“ (CL)) von 800-6400. Für ein Second-Life BES mit mindestens 4800 CL resultiert eine optimale nutzbare Speicherkapazität von 2 kWh (≈ 10.7 Wh/m2 Energiebezugsfläche (AE)). Die optimale Systemgrösse der PV-Anlage beträgt dabei 3 kWp (≈ 16 Wp/m2 AE). Demgegenüber zeigt die Gesamtsystem-Betrachtung (PV inkl. Second-Life BES) eines typischen Mehrfamilienhauses ein NPV25 von durchschnittlich 1300-1500 CHF gegeben einer Anzahl CL von 4800-6400. Die optimalen Systemgrössen betragen hierzu im Durchschnitt der betrachteten Szenarien 14 kWp (≈ 13 Wp/m2 AE) und 5 kWh (≈ 4.7 Wh/m2 AE) Speicherkapazität. Der Vergleich von Second-Life BES zu herkömmlichen Stromspeichern (engl.: „conventional“ (C)) zeigt beim MFH nahezu bei allen untersuchten Systemgrössen einen Kostenvorteil für Second-Life BES. Die Stromgestehungskosten des Second-Life BES betragen 57 Rp./ kWh bei 4800 resp. 49 Rp./ kWh bei 6400 CL (gemittelt zwischen den untersuchten Szenarien). Der Kostenvorteil gegenüber C-BES ist hierzu 110 % resp. 80 %. In einer Sensitivitätsanalyse werden die Basiskosten (Gehäuse, Verkabelung, Wechselrichter und Installation) und der Strompreis als Parameter mit grösstem Effekt auf die Profitabilität von BES identifiziert. Basierend auf energiepolitischen Szenarien der Schweiz kann mit einer Substitution von C-BES durch Second-Life BES im Jahre 2035 0.34 – 0.60 % und im Jahre 2050 1.3 – 2.0 % zum jährlichen Reduktionsziel der CO2-Emissionen beigetragen werden. Voraussetzung dafür ist die Nutzung des verfügbaren Materials aus der Elektromobilität. Zudem liegt dieser Rechnung eine Substitutionsrate der Nennkapazität von C-BES Systemen mit Second-Life BES von 14 % zugrunde. Ein Anschlusspunkt für nachfolgende Forschungsarbeiten liegt in der Gestaltung von Tarifsystemen, die einen höheren Anreiz zur Stromspeicherung geben. Zudem ist in der Betrachtung des Umweltnutzens von Second-Life BES die rasante Entwicklung von alternativen Batterietechnologien stärker zu berücksichtigen.