Gysel, Martin

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Gysel
Vorname
Martin
Name
Martin Gysel

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Coated soot particles with tunable, well-controlled properties generated in the laboratory with a miniCAST BC and a micro smog chamber
    (Elsevier, 28.05.2021) Ess, Michaela N.; Bertò, Michele; Keller, Alejandro; Gysel, Martin; Vasilatou, Konstantina [in: Journal of Aerosol Science]
    A Micro Smog Chamber (MSC) was coupled for the first time with a miniCAST 5201 Type BC combustion generator with the aim to produce a series of stable and reproducible model aerosols simulating the physical properties of combustion particles present in ambient air. With this setup it was possible to generate particles ranging from “fresh” soot (single scattering albedo SSA≤0.05, absorption Ångström exponent AAE close to 1, high EC/TC mass fraction (approximately 90%) and mobility diameter typically <100 nm) to “aged” soot with different amounts of organic coating. The “aged” soot particles could grow up to 200 nm and exhibited high SSA (up to 0.7 at λ = 870 nm), an increased AAE (up to 1.7) and low EC/TC mass fraction (down to <10%). The ageing was achieved by coating the soot particles with increasing amounts of secondary organic matter (SOM) formed by the photo-oxidation of α-pinene or mesitylene in the MSC. Thereby, the SSA and AAE increased with coating thickness, while the EC/TC mass fraction decreased. Over the experimental period of 2 h, the generation of the “aged” soot aerosols was stable with a standard deviation in particle size and number concentration of <1% and <6%, respectively. The day-to-day reproducibility was also satisfactory: with α-pinene as SOM precursor the variability (standard deviation) in particle size was <2% and in the AAE and SSA < 6%. Particle number concentrations up to 106 cm−3 and mass concentrations up to 15 mg/m3 (depending on particle size and SOM amount) could be generated, much higher than what has been reported with other oxidation flow reactors. The generated carbonaceous aerosols could find useful applications in the field of aerosol instrument calibration, particularly in the standardization of filter-based absorption photometers under controlled conditions.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch
    (Wiley, 24.05.2011) Jurányi, Zsófia; Gysel, Martin; Weingartner, Ernest; Bukowiecki, Nicolas; Kammermann, Lorenz; Baltensperger, Urs [in: Journal of Geophysical Research: Atmospheres]
    Between May 2008 and September 2009 the cloud condensation nuclei (CCN) number concentration, NCCN, was measured at the high alpine site Jungfraujoch, which is located in the free troposphere most of the time. Measurements at 10 different supersaturations (0.12%–1.18%) were made using a CCN counter (CCNC). The monthly median NCCN values show a distinct seasonal variability with ∼5–12 times higher values in summer than in winter. The major part of this variation can be explained by the seasonal amplitude of total aerosol number concentration (∼4.5 times higher values in summer), but it is further amplified (factor of ∼1.1–2.6) by a shift of the particle number size distribution toward slightly larger sizes in summer. In contrast to the extensive properties, the monthly median of the critical dry diameter, above which the aerosols activate as CCN, does not show a seasonal cycle (relative standard deviations of the monthly median critical dry diameters at the different supersaturations are 4–9%) or substantial variability (relative standard deviations of individual data points at the different supersaturations are less than 18–37%). The mean CCN-derived hygroscopicity of the aerosol corresponds to a value of the hygroscopicity parameter κ of 0.20 (assuming a surface tension of pure water) with moderate supersaturation dependence. NCCN can be reliably predicted throughout the measurement period with knowledge of the above-mentioned averaged κ value and highly time-resolved (∼5 min) particle number size distribution data. The predicted NCCN was within 0.74 to 1.29 times the measured value during 80% of the time (94,499 data points in total at 10 different supersaturations).
    01A - Beitrag in wissenschaftlicher Zeitschrift