Kuentz, Martin

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Kuentz
Vorname
Martin
Name
Kuentz, Martin

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Publikation
    Lipophilic salts and lipid-based formulations for bridging the food effect gap of venetoclax
    (Elsevier, 01/2022) Koehl, Niklas; Henze, Laura; Holm, Rene; Kuentz, Martin; Keating, John; De Vijlder, Thomas; Marx, Andreas; Griffin, Brendan [in: Journal of Pharmaceutical Sciences]
    Lipid based formulations (LBF) have shown to overcome food dependent bioavailability for some poorly water-soluble drugs. However, the utility of LBFs can be limited by low dose loading due to a low drug solubility in LBF vehicles. This study investigated the solubility and drug loading increases in LBFs using lipophilic counterions to form lipophilic salts of venetoclax. Venetoclax docusate was formed from venetoclax free base and verified by 1H NMR. Formation of stable venetoclax-fatty acid associations with either oleic acid or decanoic acid were attempted, however, the molecular associations were less consistent based on 1H NMR. Venetoclax docusate displayed a up to 6.2-fold higher solubility in self-emulsifying drug delivery systems (SEDDS) when compared to the venetoclax free base solubility resulting in a higher dose loading. A subsequent bioavailability study in landrace pigs demonstrated a 2.5-fold higher bioavailability for the lipophilic salt containing long chain SEDDS compared to the commercially available solid dispersion Venclyxto® in the fasted state. The bioavailability of all lipophilic salt SEDDS in the fasted state was similar to Venclyxto® in the fed state. This study confirmed that lipophilic drug salts increase the dose loading in LBFs and showed that lipophilic salt-SEDDS combinations may be able to overcome bioavailability limitations of drugs with low inherent dose loading in lipid vehicles. Furthermore, the present study demonstrated the utility of a LBF approach, in combination with lipophilic salts, to overcome food dependent variable oral bioavailability of drugs.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    In Silico, In Vitro, and In Vivo evaluation of precipitation inhibitors in supersaturated lipid-based formulations of venetoclax
    (American Chemical Society, 23.04.2021) Koehl, Niklas; Henze, Laura; Bennett-Lenane, Harriett; Faisal, Waleed; Price, Daniel J.; Holm, Rene; Kuentz, Martin; Griffin, Brendan [in: Molecular Pharmaceutics]
    The concept of using precipitation inhibitors (PIs) to sustain supersaturation is well established for amorphous formulations but less in the case of lipid-based formulations (LBF). This study applied a systematic in silico–in vitro–in vivo approach to assess the merits of incorporating PIs in supersaturated LBFs (sLBF) using the model drug venetoclax. sLBFs containing hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinylpyrrolidone (PVP), PVP-co-vinyl acetate (PVP/VA), Pluronic F108, and Eudragit EPO were assessed in silico calculating a drug–excipient mixing enthalpy, in vitro using a PI solvent shift test, and finally, bioavailability was assessed in vivo in landrace pigs. The estimation of pure interaction enthalpies of the drug and the excipient was deemed useful in determining the most promising PIs for venetoclax. The sLBF alone (i.e., no PI present) displayed a high initial drug concentration in the aqueous phase during in vitro screening. sLBF with Pluronic F108 displayed the highest venetoclax concentration in the aqueous phase and sLBF with Eudragit EPO the lowest. In vivo, the sLBF alone showed the highest bioavailability of 26.3 ± 14.2%. Interestingly, a trend toward a decreasing bioavailability was observed for sLBF containing PIs, with PVP/VA being significantly lower compared to sLBF alone. In conclusion, the ability of a sLBF to generate supersaturated concentrations of venetoclax in vitro was translated into increased absorption in vivo. While in silico and in vitro PI screening suggested benefits in terms of prolonged supersaturation, the addition of a PI did not increase in vivo bioavailability. The findings of this study are of particular relevance to pre-clinical drug development, where the high in vivo exposure of venetoclax was achieved using a sLBF approach, and despite the perceived risk of drug precipitation from a sLBF, including a PI may not be merited in all cases.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches | a PEARRL review
    (Wiley, 04/2019) Ditzinger, Felix; Price, Daniel J.; Ilie, Alexandra Roxana; Koehl, Niklas; Jankovic, Sandra; Tsakiridou, Georgia; Aleandri, Simone; Kalantzi, Lida; Holm, Rene; Nair, Anita; Saal, Christoph; Griffin, Brendan; Kuentz, Martin [in: Journal of Pharmacy and Pharmacology]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Lipophilicity and hydrophobicity considerations in bio‐enabling oral formulations approaches – a PEARRL review
    (Wiley, 08/2018) Ditzinger, Felix; Price, Daniel; Ilie, Alexandra Roxana; Koehl, Niklas; Jankovic, Sandra; Tsakiridou, Georgia; Aleandri, Simone; Kalantzi, Lida; Holm, Rene; Nair, Anita; Saal, Christoph; Griffin, Brendan; Kuentz, Martin [in: Journal of Pharmacy and Pharmacology]
    Objectives This review highlights aspects of drug hydrophobicity and lipophilicity as determinants of different oral formulation approaches with specific focus on enabling formulation technologies. An overview is provided on appropriate formulation selection by focussing on the physicochemical properties of the drug. Key findings Crystal lattice energy and the octanol–water partitioning behaviour of a poorly soluble drug are conventionally viewed as characteristics of hydrophobicity and lipophilicity, which matter particularly for any dissolution process during manufacturing and regarding drug release in the gastrointestinal tract. Different oral formulation strategies are discussed in the present review, including lipid‐based delivery, amorphous solid dispersions, mesoporous silica, nanosuspensions and cyclodextrin formulations. Summary Current literature suggests that selection of formulation approaches in pharmaceutics is still highly dependent on the availability of technological expertise in a company or research group. Encouraging is that, recent advancements point to more structured and scientifically based development approaches. More research is still needed to better link physicochemical drug properties to pharmaceutical formulation design.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Application of the solubility parameter concept to assist with oral delivery of poorly water-soluble drugs – a PEARRL review
    (Wiley, 07/2018) Jankovic, Sandra; Tsakiridou, Georgia; Ditzinger, Felix; Koehl, Niklas; Price, Daniel; Ilie, Alexandra Roxana; Kalantzi, Lida; Kimpe, Kristof; Holm, Rene; Nair, Anita; Griffin, Brendan; Saal, Christoph; Kuentz, Martin [in: Journal of Pharmacy and Pharmacology]
    Objectives Solubility parameters have been used for decades in various scientific fields including pharmaceutics. It is, however, still a field of active research both on a conceptual and experimental level. This work addresses the need to review solubility parameter applications in pharmaceutics of poorly water‐soluble drugs. Key findings An overview of the different experimental and calculation methods to determine solubility parameters is provided, which covers from classical to modern approaches. In the pharmaceutical field, solubility parameters are primarily used to guide organic solvent selection, cocrystals and salt screening, lipid‐based delivery, solid dispersions and nano‐ or microparticulate drug delivery systems. Solubility parameters have been applied for a quantitative assessment of mixtures, or they are simply used to rank excipients for a given drug. Summary In particular, partial solubility parameters hold great promise for aiding the development of poorly soluble drug delivery systems. This is particularly true in early‐stage development, where compound availability and resources are limited. The experimental determination of solubility parameters has its merits despite being rather labour‐intensive because further data can be used to continuously improve in silico predictions. Such improvements will ensure that solubility parameters will also in future guide scientists in finding suitable drug formulations.
    01A - Beitrag in wissenschaftlicher Zeitschrift