Hinkelmann, Knut

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Hinkelmann
Vorname
Knut
Name
Hinkelmann, Knut

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Publikation
    Practice track: a learning tracker using digital biomarkers for autistic preschoolers
    (2022) Sandhu, Gurmit; Kilburg, Anne; Martin, Andreas; Pande, Charuta; Witschel, Hans Friedrich; Laurenzi, Emanuele; Billing, Erik; Hinkelmann, Knut; Gerber, Aurona [in: Proceedings of the Society 5.0 Conference 2022 - Integrating digital world and real world to resolve challenges in business and society]
    Preschool children, when diagnosed with Autism Spectrum Disorder (ASD), often ex- perience a long and painful journey on their way to self-advocacy. Access to standard of care is poor, with long waiting times and the feeling of stigmatization in many social set- tings. Early interventions in ASD have been found to deliver promising results, but have a high cost for all stakeholders. Some recent studies have suggested that digital biomarkers (e.g., eye gaze), tracked using affordable wearable devices such as smartphones or tablets, could play a role in identifying children with special needs. In this paper, we discuss the possibility of supporting neurodiverse children with technologies based on digital biomark- ers which can help to a) monitor the performance of children diagnosed with ASD and b) predict those who would benefit most from early interventions. We describe an ongoing feasibility study that uses the “DREAM dataset”, stemming from a clinical study with 61 pre-school children diagnosed with ASD, to identify digital biomarkers informative for the child’s progression on tasks such as imitation of gestures. We describe our vision of a tool that will use these prediction models and that ASD pre-schoolers could use to train certain social skills at home. Our discussion includes the settings in which this usage could be embedded.
    04B - Beitrag Konferenzschrift
  • Publikation
    Hybrid conversational AI for intelligent tutoring systems
    (Sun SITE, Informatik V, RWTH Aachen, 2021) Pande, Charuta; Witschel, Hans Friedrich; Martin, Andreas; Montecchiari, Devid; Martin, Andreas; Hinkelmann, Knut; Fill, Hans-Georg; Gerber, Aurona; Lenat, Dough; Stolle, Reinhard; Harmelen, Frank van [in: Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)]
    We present an approach to improve individual and self-regulated learning in group assignments. We focus on supporting individual reflection by providing feedback through a conversational system. Our approach leverages machine learning techniques to recognize concepts in student utterances and combines them with knowledge representation to infer the student’s understanding of an assignment’s cognitive requirements. The conversational agent conducts end-to-end conversations with the students and prompts them to reflect and improve their understanding of an assignment. The conversational agent not only triggers reflection but also encourages explanations for partial solutions.
    04B - Beitrag Konferenzschrift
  • Publikation
    Learning and engineering similarity functions for business recommenders
    (2019) Witschel, Hans Friedrich; Martin, Andreas; Martin, Andreas; Hinkelmann, Knut; Gerber, Aurona; Lenat, Doug; Harmelen, Frank van; Clark, Peter [in: Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)]
    We study the optimisation of similarity measures in tasks where the computation of similarities is not directly visible to end users, namely clustering and case-based recommenders. In both, similarity plays a crucial role, but there are also other algorithmic components that contribute to the end result. Our suggested approach introduces a new form of interaction into these scenarios that make the use of similarities transparent to end users and thus allows to gather direct feedback about similarity from them. This happens without distracting them from their goal – rather allowing them to obtain better and more trustworthy results by excluding dissimilar items. We then propose to use the feedback in a way that incorporates machine learning for updating weights and decisions of knowledge engineers about possible additional features, based on insights derived from a summary of user feedback. The reviewed literature and our own previous empirical investigations suggest that this is the most feasible way – involving both machine and human, each in a task that they are particularly good at.
    04B - Beitrag Konferenzschrift