Pande, Charuta

Charuta Pande


Gerade angezeigt 1 - 6 von 6
  • Publikation
    A new approach for teaching programming: model-based agile programming (MBAD)
    (ACM, 2023) Telesko, Rainer; Spahic, Maja; Hinkelmann, Knut; Pande, Charuta [in: ICIEI 2023. Proceedings of 2023 The 8th International Conference on Information and Education Innovations]
    Designing courses for introductory programming courses with a heterogeneous audience (business and IT background as well) is a challenging task. In an internal project of the School of Business at the FHNW University of Applied Sciences and Arts Northwestern Switzerland (FHNW) a group of lecturers developed a concept entitled “Model-based agile development” (MBAD) which supports the learning of elementary programming concepts in an agile environment and builds the basis for advanced courses. MBAD will be used as a basic learning module for various Bachelor programs at the FHNW.
    04B - Beitrag Konferenzschrift
  • Publikation
    New hybrid techniques for business recommender systems
    (MDPI, 2022) Pande, Charuta; Witschel, Hans Friedrich; Martin, Andreas [in: Applied Sciences]
    Besides the typical applications of recommender systems in B2C scenarios such as movie or shopping platforms, there is a rising interest in transforming the human-driven advice provided, e.g., in consultancy via the use of recommender systems. We explore the special characteristics of such knowledge-based B2B services and propose a process that allows incorporating recommender systems into them. We suggest and compare several recommender techniques that allow incorporating the necessary contextual knowledge (e.g., company demographics). These techniques are evaluated in isolation on a test set of business intelligence consultancy cases. We then identify the respective strengths of the different techniques and propose a new hybridisation strategy to combine these strengths. Our results show that the hybridisation leads to substantial performance improvement over the individual methods.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    A computational literature analysis of conversational AI research with a focus on the coaching domain
    (2022) Pande, Charuta; Fill, Hans-Georg; Hinkelmann, Knut; Hinkelmann, Knut; Gerber, Aurona [in: Proceedings of the Society 5.0 Conference 2022 - Integrating digital world and real world to resolve challenges in business and society]
    We conduct a computational analysis of the literature on Conversational AI. We identify the trend based on all publications until the year 2020. We then concentrate on the publications for the last five years between 2016 and 2020 to find out the top ten venues and top three journals where research on Conversational AI has been published. Further, using the Latent Dirichlet Allocation (LDA) topic modeling technique, we discover nine important topics discussed in Conversational AI literature and specifically two topics related to the area of coaching. Finally, we detect the key authors who have contributed significantly to Conversational AI research and area(s) related to coaching. We determine the key authors' areas of expertise and how the knowledge is distributed across different regions. Our findings show an increasing trend and thus, an interest in Conversational AI research, predominantly from the authors in Europe.
    04B - Beitrag Konferenzschrift
  • Publikation
    Hybrid conversational AI for intelligent tutoring systems
    (Sun SITE, Informatik V, RWTH Aachen, 2021) Pande, Charuta; Witschel, Hans Friedrich; Martin, Andreas; Montecchiari, Devid; Martin, Andreas; Hinkelmann, Knut; Fill, Hans-Georg; Gerber, Aurona; Lenat, Dough; Stolle, Reinhard; Harmelen, Frank van [in: Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)]
    We present an approach to improve individual and self-regulated learning in group assignments. We focus on supporting individual reflection by providing feedback through a conversational system. Our approach leverages machine learning techniques to recognize concepts in student utterances and combines them with knowledge representation to infer the student’s understanding of an assignment’s cognitive requirements. The conversational agent conducts end-to-end conversations with the students and prompts them to reflect and improve their understanding of an assignment. The conversational agent not only triggers reflection but also encourages explanations for partial solutions.
    04B - Beitrag Konferenzschrift
  • Publikation
    Visualization of patterns for hybrid learning and reasoning with human involvement
    (Springer, 2020) Witschel, Hans Friedrich; Pande, Charuta; Martin, Andreas; Laurenzi, Emanuele; Hinkelmann, Knut; Dornberger, Rolf [in: New trends in business information systems and technology]
    04A - Beitrag Sammelband
  • Publikation
    Towards an assistive and pattern learning-driven process modeling approach
    (2019) Laurenzi, Emanuele; Hinkelmann, Knut; Jüngling, Stephan; Montecchiari, Devid; Pande, Charuta; Martin, Andreas; Martin, Andreas; Hinkelmann, Knut; Gerber, Aurona; Lenat, Doug; van Harmelen, Frank; Clark, Peter [in: Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)]
    The practice of business process modeling not only requires modeling expertise but also significant domain expertise. Bringing the latter into an early stage of modeling contributes to design models that appropriately capture an underlying reality. For this, modeling experts and domain experts need to intensively cooperate, especially when the former are not experienced within the domain they are modeling. This results in a time-consuming and demanding engineering effort. To address this challenge, we propose a process modeling approach that assists domain experts in the creation and adaptation of process models. To get an appropriate assistance, the approach is driven by semantic patterns and learning. Semantic patterns are domain-specific and consist of process model fragments (or end-to-end process models), which are continuously learned from feedback from domain as well as process modeling experts. This enables to incorporate good practices of process modeling into the semantic patterns. To this end, both machine-learning and knowledge engineering techniques are employed, which allow the semantic patterns to adapt over time and thus to keep up with the evolution of process modeling in the different business domains.
    04B - Beitrag Konferenzschrift