Knopf, Antje

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Knopf
Vorname
Antje
Name
Knopf, Antje

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    A survey of practice patterns for real-time intrafractional motion-management in particle therapy
    (Elsevier, 26.04.2023) Zhang, Ye; Trnkova, Petra; Toshito, Toshiyuki; Heijmen, Ben; Richter, Christian; Aznar, Marianne; Albertini, Francesca; Bolsi, Alexandra; Daartz, Juliane; Bertholet, Jenny; Knopf, Antje [in: Physics and Imaging in Radiation Oncology]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – A comprehensive review
    (Elsevier, 02/2022) Czerska, Katarzyna; Fracchiolla, Francesco; Graeff, Christian; Molinelli, Silvia; Rinaldi, Ilaria; Rucincki, Antoni; Sterpin, Edmond; Stützer, Kristin; Trnkova, Petra; Zhang, Ye; Chang, Joe Y; Giap, Huan; Liu, Wei; Schild, Steven E; Simone, Charles B.; Lomax, Antony J; Meijers, Arturs; Knopf, Antje [in: Radiotherapy and Oncology]
    4D multi-image-based (4D MIB) optimization is a form of robust optimization where different uncertainty scenarios, due to anatomy variations, are considered via multiple image sets (e.g., 4DCT). In this review, we focused on providing an overview of different 4DMIB optimization implementations, introduced var- ious frameworks to evaluate the robustness of scanned particle therapy affected by breathing motion and summarized the existing evidence on the necessity of using 4DMIB optimization clinically. Expected potential benefits of 4DMIB optimization include more robust and/or interplay-effect-resistant doses for the target volume and organs-at-risk for indications affected by anatomical variations (e.g., breathing, peristalsis, etc.). Although considerable literature is available on the research and technical aspects of 4DMIB, clinical studies are rare and often contain methodological limitations, such as, limited patient number, motion amplitude, motion and delivery time structure considerations, number of repeat CTs, etc. Therefore, the data are not conclusive. In addition, multiple studies have found that robust 3D opti- mized plans result in dose distributions within the set clinical tolerances and, therefore, are suitable for a treatment of moving targets with scanned particle therapy. We, therefore, consider the clinical necessity of 4D MIB optimization, when treating moving targets with scanned particle therapy, as still to be demonstrated.
    01A - Beitrag in wissenschaftlicher Zeitschrift