Eismann, Ralph

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Eismann
Vorname
Ralph
Name
Eismann, Ralph

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Low-Cost Monitoring thermischer Solaranlagen mit IoT-Sensor und maschinellem Lernen
    (Institut Nachhaltigkeit und Energie am Bau, Hochschule für Architektur, Bau und Geomatik FHNW, 10.04.2024) Sawant, Parantapa; Sintzel, Barbara; Eismann, Ralph; Hofmann, Joachim; Sitzmann, Bernd
    Das Projekt behandelte die kritische Notwendigkeit, die Überwachung von solarthermischen Anlagen in Bezug auf einfache Implementierung, Zuverlässigkeit und Kosteneffizienz zu verbessern. Dies wurde erreicht durch minimalen Hardwareaufwand in Form eines einzigen LoRaWAN Sensor zur Messung der Vorlauftemperatur, einer cloudbasierten Datenbank mit automatischer Einbindung von Wetterdaten der nächstgelegenen Wetterstation und eines regelbasierten Algorithmus (RBA) zur automatisierten Datenanalyse und Generation von Fehlermeldungen. Darüber hinaus waren alle Software-Tools Open Source. Die Grundlagen wurden bereits in einem früheren Projekt, «LoCoSol», gelegt. Ziel des aktuellen Projekts war es, die Genauigkeit der Fehlererkennung zu erhöhen, den Solarertrag zu schätzen und den Bewertungsprozess in einem benutzerfreundlichen und robusten Rahmen vollständig zu automatisieren. Die quantitative und qualitative Analyse der Ergebnisse bestätigte, dass die angestrebte Genauigkeit für die verschiedenen Key Performance Indikatoren (KPIs) erreicht wurde, z.B. 98% für den Pumpenbetrieb und 93% für die Stagnationserkennung. Zusätzlich wurden vier neue KPIs für die Erkennung von Wärmeverlusten durch Nachtauskühlung mit einer zufriedenstellenden Genauigkeit von mindestens 86% implementiert. Der neue RBA schätzt auch den zu erwartenden Solarertrag für jede Anlage ausreichend ab. Gegenüber dem im Vorgängerprojekt entwickelten hybriden Algorithmus wurden mit dem RBA bereits gleichwertige, beziehungsweise für einige KPIs sogar höhere Genauigkeiten erreicht. Im Hinblick auf das Software-Framework wurde ein automatisiertes Test-Setup erstellt, welches die Zuverlässigkeit des Codes erhöht, und die RBA wurde in die Datenbankumgebung des Unternehmens implementiert. Dies erhöhte die Robustheit, da die Anzahl der beteiligten Softwaretools im Vergleich zum Vorgängerprojekt reduziert wurde. Die erfolgreiche Implementierung eines Überwachungssystems zur Erkennung von Betriebsfehlern oder Abweichungen vom geplanten Solarertrag aufgrund von Konstruktions- und Installationsfehlern an 468 Anlagen (in einem relativ kurzen Zeitraum) hat die Skalierbarkeit und Kosteneffizienz dieses Frameworks bewiesen. Im Vergleich zu einem typischen drahtgebundenen Datenerfassungssystem mit TCP/IP-Kommunikationsprotokoll und mehreren Sensoren zur Überwachung einer Anlage sind geringere Kosten zu erwarten. Eine kritische Diskussion der Ergebnisse zeigt jedoch auch die Grenzen der RBA in Bezug auf die Qualität der verwendeten Daten und den hohen Aufwand für die Anpassung der Parameter. Hier untersucht das Projekt die Integration von Algorithmen des maschinellen Lernens zur automatischen Fehlererkennung und zur verbesserten Schätzung der in der RBA verwendeten Parameter. Diese Methoden haben sich als vielversprechend erwiesen, wenn sie in Kombination mit der RBA eingesetzt werden, um ein automatisiertes und genaueres System zu erhalten.
    05 - Forschungs- oder Arbeitsbericht
  • Publikation
    A thermal-hydraulic model for the stagnation of solar thermal systems with flat-plate collector arrays
    (MDPI, 30.01.2021) Eismann, Ralph; Hummel, Sebastian; Giovanetti, Federico [in: Energies]
    Stagnation is the transient state of a solar thermal system under high solar irradiation where the useful solar gain is zero. Both flat-plate collectors with selective absorber coatings and vacuum-tube collectors exhibit stagnation temperatures far above the saturation temperature of the glycol-based heat carriers within the range of typical system pressures. Therefore, stagnation is always associated with vaporization and propagation of vapor into the pipes of the solar circuit. It is therefore essential to design the system in such a way that vapor never reaches components that cannot withstand high temperatures. In this article, a thermal-hydraulic model based on the integral form of a two-phase mixture model and a drift-flux correlation is presented. The model is applicable to solar thermal flat-plate collectors with meander-shaped absorber tubes and selective absorber coatings. Experimental data from stagnation experiments on two systems, which are identical except for the optical properties of the absorber coating, allowed comparison with simulations carried out under the same boundary conditions. The absorber of one system features a conventional highly selective coating, while the absorber of the other system features a thermochromic coating, which exhibits a significantly lower stagnation temperature. Comparison of simulation results and experimental data shows good conformity. This model is implemented into an open-source software tool called THD for the thermal-hydraulic dimensioning of solar systems. The latest version of THD, updated by the results of this article, enables planners to achieve cost-optimal design of solar thermal systems and to ensure failsafe operation by predicting the steam range under the initial and boundary conditions of worst-case scenarios.
    01A - Beitrag in wissenschaftlicher Zeitschrift