Hoffmann, Caroline
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse
Hybride Lüftung – ein guter Kompromiss?
2022-12-14, Hoffmann, Caroline, Dorer, Victor, Hauri, Claudia, Primas, Alexander, Huber, Heinrich, Bichsel, Jürg, Sattler, Michael
Dieser Beitrag fokussiert auf hybride Lüftungen, als Kombination aus natürlicher und mechanischer Lüftung, in Wohn- und Bürobauten.
U-Wert Messungen vor Ort mit drei unterschiedlichen Messgeräten
2020-09-04, Hoffmann, Caroline, Geissler, Achim, Bichsel, Jürg, Sattler, Michael
In diesem Beitrag geht es um in-situ U-Wert Messungen. Im Winter 2019/20 werden an zwei Mauerwerkswänden (M1 und M2) und einer Betonwand (B1) mit drei unterschiedlichen mobilen U-Wertmessgeräten insgesamt 11 Messungen durchgeführt. Die Veröffentlichung beschreibt das Vorgehen und die Ergebnisse.
Smart Stability – Market-economic interaction of smart homes for improved power network stability
2015, Lammel, Benjamin, Schulz, Nicola, Bichsel, Jürg, Wache, Holger, Farooq, Abdul, Hoffmann, Caroline, Mettler, Fabian
In this article, the "SmartStability" concept is introduced and first results are shown. The concept is based on the exchange of electrical energy within a network of households that possess temporal flexibilities in consuming or providing energy from or to the network. The exchange is governed by a market-economic negotiation principle between the households. Temporal flexibility is achieved by exploiting thermal capacities of the buildings themselves and those of warm water storages, and by allowing certain temperature bands. Electric and thermal energy forms are coupled by means of heat pumps and electric water boilers. The physical energy exchange takes place via the electrical grid. The behaviour of a SmartStability network has been simulated, based on physical models of the energetic resources within each network unit, and by interlinking the individual units to form the entire SmartStability network within a multi-agent environment. Goal of several simulation scenarios was the adaptation of the time-dependent power consumption profile of the network to a given schedule. Networks consisting of 5 to 100 houses have been simulated. The simulation results show that deviations from schedule can be reduced by approx. 50% by the market-economics-based self-optimization and the resulting intelligent operation of resources. By additionally using battery storages, the deviation from schedule can be further significantly reduced.