Vogel, Dorian
Loading...
Email Address
Birth Date
2 results
Search results
Now showing 1 - 2 of 2
- PublicationTowards tracking of deep brain stimulation electrodes using an integrated magnetometer(MDPI, 04/2021) Quirin, Thomas; Féry, Corentin; Vogel, Dorian; Vergne, Céline; Sarracanie, Mathieu; Salameh, Najat; Madec, Morgan; Hemm-Ode, Simone; Hébrard, Luc; Pascal, Joris [in: Sensors]This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationTracking the orientation of deep brain stimulation electrodes using an embedded magnetic sensor(2021) Vergne, Céline; Madec, Morgan; Hemm-Ode, Simone; Quirin, Thomas; Vogel, Dorian; Hebrard, Luc; Pascal, Joris [in: 10th International IEEE EMBS Conference on Neural Engineering]This paper proposes a three-dimensional (3D) orientation tracking method of a 3D magnetic sensor embedded in a 2.5 mm diameter electrode. Our system aims to be used during intraoperative surgery to detect the orientation of directional leads (D-leads) for deep brain stimulation (DBS).06 - Präsentation