Amrein, Meret

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Amrein
Vorname
Meret
Name
Amrein, Meret

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Organic solvent free PbI2 recycling from perovskite solar cells using hot water
    (Elsevier, 05.04.2023) Schmidt, Felix; Amrein, Meret; Hedwig, Sebastian; Kober-Czerny, Manuel; Paracchino, Adriana; Holappa, Ville; Suhonen, Riikka; Schäffer, Andreas; Constable, Edwin C.; Snaith, Henry J.; Lenz, Markus [in: Journal of Hazardous Materials]
    Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies’ commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 – 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites’ end-of-life.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Recovery of scandium from acidic waste solutions by means of polymer inclusion membranes
    (Elsevier, 2022) Hedwig, Sebastian; Kraus, Manuel; Amrein, Meret; Stiehm, Johannes; Constable, Edwin C.; Lenz, Markus [in: Hydrometallurgy]
    Scandium is a raw material with properties that promise considerable potential for application in alloys to enable aviation fuel savings and as dopants for use in sustainable energy production using solid oxide fuel cells. Despite these attractive properties, scandium is rarely used due to its scarcity and unreliable supply. Therefore, new strategies for scandium recovery are of economic priority. In this study, polymer inclusion membranes (PIMs) consisting of PVDF-HFP, 2-NPOE and DEHPA, were optimised for selective scandium separation from real TiO2 production waste. With the optimised system, >60% of the scandium was recovered with high selectivity, resulting in scandium mole fraction at more than two orders of magnitude higher in the receiving phase than in the original waste. This suggests PIMs may be an effective way to recover scandium from bulk waste, thus easing the scarcity and insecurity that currently limit its bulk application.
    01A - Beitrag in wissenschaftlicher Zeitschrift